Types

L ambda lerms

* Variables: xvy z...

o Abstractions (function creation): Ax.M
e AX.M: X M[X]
* parameter x; body M

* Applications: MN

 meaning M(N)

Currying

* Unary functions suftice

* |nstead of M(X,Y) use M(X)(Y)
* Applying M to X and then applying result to Y
e Often written as MXY
* Understood as (MX)Y

* +13 means (+1)3, where +1 increments any
number

Beta

Apply an abstraction to a term
o (AX.M[X,X,....x])N = M|N,N,... N]

* replace all free occurrences of x in M with N

Combinatory Logic

SXyz = (Xz)(yz)
KXy = X

IX = X

Combinatory Rewriting

Sxyz » (xz)(yz)
KXy = X

|x = X

| Combinator

Sxyz » (xz)(yz)

KXy = X

o (SKK)x = (Kx)(Kx) = x

e Letl =5KK

Y Combinator

Yz =2z(Yz)

S(K(SINS(S(KS)K)(K(SIT)))

Lemma: Slix = xx

S (K(SI)) (S(S(KS)K)(K(SIN))) z
(K(SI1))z (S (S(KS)K) (K(SI)) 2)
Sl (S(KS)Kz (K(SII) 2)

SIl ((KS)z(Kz) (SI1))

Sl (S(Kz)(SI))

Base lypes

Integers
Booleans
Characters

Floating point

Polymorphic lypes

e Lists (of anything)
e Stacks

e [rees

Function lypes

* Program N —= N
e Interpreter (N=N)x N —= N

. Compiler (N=N) = (A—A)

Arrow lypes

Notation

e t:7 (termt hastype 1)
Suppose x:ogandt:t

e MX.1: 0T

Suppose s:t—ooandt: T

I)

Nontermination

(AX.XX)(AX.XX) rewrites to itself

o (AX.XX)(AX.XX) m (AX.XX)(AX.XX)

Nontermination

What kind of function may be applied to itselt?

* Interpreter
e partial evaluator
e compiler

e compiler-co
* compiler-co

3
U-
D

-compiler

3
U-
D

Well-Typed Terms

e ambda terms

¢ A

 Some terms can be typed

* A

e Some cannot

AX XX

Well-Typed lerms

 Have normal forms
e Easy (Turing)
 Have no immortal (nonterminating) reductions

 Hard (Tait)

lTermination Properties

e sisterminating iff all t, such s = t, are
terminating

e |f(st)is terminating, then s and t are
e |ftisterminating, then (xt) is

e |f s and t[s] are terminating, then (Ax.t)s is

Computability

* Aterm of base type is computable iff it is
terminating.

 Aterm of arrow type is computable if applying it to
a computable term always gives a computable
term.

| emmata

e 1:If tis computable, then it is terminating.

e 2:If s[t] Is computable and t is terminating,
then (Ax.s)t is computable.

e 3: If substitution a is computable, then so is sa.

Theorem

* Every (typeable) term is computable, hence,
terminating.

* Proof: Empty a.

| emmata

e 1:Iftis computable, then it is terminating.
By induction on type structure.
o 2:If s[t] Is computable ..., then (AX.S)t Is.
* By induction on type structure.
e 3: If substitution a is computable, then so is sa.

* By induction on term structure.

l emma 1

e a:lfs,...,tare terminating, then w=xs...t is
computable.

e b: If wis computable, then it is terminating.

L emma 1: Base

e a:lfs,...,tare terminating, then w=xs...t is
computable.

* b: If wis computable, then it is terminating.
* W : base type
* a: xs...tisterminating, hence computable

* p: by definition

L emma 1: Arrow

e a:lfs,...,tare terminating, then w=xs...t is
computable.

* b: If wis computable, then it is terminating.
* W . 0T
* a: xs...tu: 7iIs computable by induction

* p: By def. wv : T is computable for computable
vV :o. Byind. wvterminating; so w is.

L emma 2

e |t s[t] is computable and t is terminating, then
(AX.s[x])t is computable.

L emma 2

* GGiven: s[t] is computable, t terminating.
By L1b, s[t] is terminating.

 Hence s[x] is also terminating.

L emma 2

e Consider any computable us,...,un (of
appropriate type) such that (Ax.s[x])tu1...unis

basic (n=0).

* We need to show (AX.s[x])tu+...un terminating,
hence computable (by def.).

o Computability of each prefix (Ax.s[x])tu1...u; will
follow.

L emma 2

o \We need to show (AX.s[x])tu+...un terminating.

e g[t] iIs computable; so s|t]u1...unis also (by def.)
computable and terminating.

o (AX.S[XDtui...un = = (AX.S'[xPt'U’y...u =»
s'[t']u’4...u’n which is terminating, since s[t]us...
Un IS.

|l emma 3

* |f substitution a is computable (all the terms to
which variables map are computable), then so is
sQl.

|l emma 3

e |f ais computable, then so is sa.
e XA Is either the variable x or a computable term t

e (uv)a = (ua)(va) both parts of which are
computable by induction, and so (ua)(va) is by detf.

o Let s=(AX.t). Then sa=(Ax.ta’), where a’ is a without
any substitution for x. Consider any computable u.
By ind. ta’[x~u] is computable. By L2,
(sa)u=(Ax.ta’)u is computable. So, by det. sa is.

Two Dimensions

LX LXX XLX XXX LXX

Two Dimensions

LX LXX XLX XXX LXX

Two Dimensions

LX LXX XLX XXX LXX

