
Types

Lambda Terms
• Variables: x y z…

• Abstractions (function creation): λx.M

• λx.M: x ↦ M[x]

• parameter x; body M

• Applications: MN

• meaning M(N)

Currying
• Unary functions suffice

• Instead of M(X,Y) use M(X)(Y)

• Applying M to X and then applying result to Y

• Often written as MXY

• Understood as (MX)Y

• +13 means (+1)3, where +1 increments any
number

Beta

Apply an abstraction to a term

• (λx.M[x,x,…,x])N ➨ M[N,N,…,N]

• replace all free occurrences of x in M with N

Combinatory Logic

Sxyz = (xz)(yz)

Kxy = x

Ix = x

Combinatory Rewriting

Sxyz ➨ (xz)(yz)

Kxy ➨ x

Ix ➨ x

I Combinator

Sxyz ➨ (xz)(yz)

Kxy ➨ x

• (SKK)x ➨ (Kx)(Kx) ➨ x

• Let I = SKK

Y Combinator

Yz = z(Yz)

S(K(SII))(S(S(KS)K)(K(SII)))

Lemma: SIIx = xx

S (K(SII)) (S(S(KS)K)(K(SII))) z

(K(SII))z (S (S(KS)K) (K(SII)) z)

SII (S(KS)Kz (K(SII) z)

SII ((KS)z(Kz) (SII))

SII (S(Kz)(SII))

…

Base Types

• Integers

• Booleans

• Characters

• Floating point

Polymorphic Types

• Lists (of anything)

• Stacks

• Trees

• ….

Function Types

• Program N → N

• Interpreter (N→N) x N → N

• Compiler (N→N) → (A→A)

Arrow Types
• Notation

• t : 𝜏 (term t has type 𝜏)

• Suppose x : 𝜎 and t : 𝜏

• λx.t : 𝜎→𝜏

• Suppose s : 𝜏→𝜎 and t : 𝜏

• st : 𝜎

Nontermination

 (λx.xx)(λx.xx) rewrites to itself

• (λx.xx)(λx.xx) ➨ (λx.xx)(λx.xx)

Nontermination

What kind of function may be applied to itself?

• interpreter
• partial evaluator
• compiler
• compiler-compiler
• compiler-compiler-compiler

Well-Typed Terms
• Lambda terms

• Λ

• Some terms can be typed

• Λ

• Some cannot
λx.xx

Well-Typed Terms

• Have normal forms

• Easy (Turing)

• Have no immortal (nonterminating) reductions

• Hard (Tait)

Termination Properties

• s is terminating iff all t, such s ➨ t, are
terminating

• If (st) is terminating, then s and t are

• If t is terminating, then (xt) is

• If s and t[s] are terminating, then (λx.t)s is

Computability

• A term of base type is computable iff it is
terminating.

• A term of arrow type is computable if applying it to
a computable term always gives a computable
term.

Lemmata

• 1: If t is computable, then it is terminating.

• 2: If s[t] is computable and t is terminating,
then (λx.s)t is computable.

• 3: If substitution α is computable, then so is sα.

Theorem

• Every (typeable) term is computable, hence,
terminating.

• Proof: Empty α.

Lemmata
• 1: If t is computable, then it is terminating.

• By induction on type structure.

• 2: If s[t] is computable …, then (λx.s)t is.

• By induction on type structure.

• 3: If substitution α is computable, then so is sα.

• By induction on term structure.

Lemma 1

• a: If s,…,t are terminating, then w=xs…t is
computable.

• b: If w is computable, then it is terminating.

Lemma 1: Base
• a: If s,…,t are terminating, then w=xs…t is

computable.

• b: If w is computable, then it is terminating.

• w : base type

• a: xs…t is terminating, hence computable

• b: by definition

Lemma 1: Arrow
• a: If s,…,t are terminating, then w=xs…t is

computable.

• b: If w is computable, then it is terminating.

• w : 𝜎→𝜏

• a: xs…tu : 𝜏 is computable by induction

• b: By def. wv : 𝜏 is computable for computable
v : 𝜎. By ind. wv terminating; so w is.

Lemma 2

• If s[t] is computable and t is terminating, then
(λx.s[x])t is computable.

Lemma 2

• Given: s[t] is computable, t terminating.

• By L1b, s[t] is terminating.

• Hence s[x] is also terminating.

Lemma 2
• Consider any computable u1,…,un (of

appropriate type) such that (λx.s[x])tu1…un is
basic (n≥0).

• We need to show (λx.s[x])tu1…un terminating,
hence computable (by def.).

• Computability of each prefix (λx.s[x])tu1…ui will
follow.

Lemma 2

• We need to show (λx.s[x])tu1…un terminating.

• s[t] is computable; so s[t]u1…un is also (by def.)
computable and terminating.

• (λx.s[x])tu1…un ➨… ➨ (λx.s’[x])t’u’1…u’n ➨
s’[t’]u’1…u’n which is terminating, since s[t]u1…
un is.

Lemma 3

• If substitution α is computable (all the terms to
which variables map are computable), then so is
sα.

Lemma 3
• If α is computable, then so is sα.

• xα is either the variable x or a computable term t

• (uv)α = (uα)(vα) both parts of which are
computable by induction, and so (uα)(vα) is by def.

• Let s=(λx.t). Then sα=(λx.tα’), where α’ is α without
any substitution for x. Consider any computable u.
By ind. tα’[x↦u] is computable. By L2,
(sα)u=(λx.tα’)u is computable. So, by def. sα is.

Two Dimensions
X XX LX L XX X LX XXX LX X

o

o-o

o-(o-o)

(o-o)-o

Two Dimensions
X XX LX L XX X LX XXX LX X

o

o-o

o-(o-o)

(o-o)-o

Two Dimensions
X XX LX L XX X LX XXX LX X

o

o-o

o-(o-o)

(o-o)-o

