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1. INTRODUCTION

In 1982, I moved from mathematics to computer science. Teaching a programming
language, I noticed that it was interpreted differently by different compilers. I
wondered — as many did before me — what is exactly the semantics of the pro-
gramming language? What is the semantics of a given program? In this connection,
I studied the wisdom of the time, in particular denotational semantics and algebraic
specifications. Certain aspects of those two rigorous approaches appealed to this
logician and former algebraist; I felt though that neither approach was realistic.

It occurred to me that, in some sense, Turing solved the problem of the semantics
of programs. While the “official” Turing thesis is that every computable function
is Turing computable, Turing’s informal argument in favor of his thesis justifies a
stronger thesis: every algorithm can be simulated by a Turing machine. According
to the stronger thesis, a program can be simulated and therefore given a precise
meaning by a Turing machine (TM). In practice, it would be ridiculous to use TMs
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to provide program semantics. TMs deal with single bits. Typically there is a huge
gap between the abstraction level of the program and that of the TMs; even if you
succeed in the tedious task of translating the program to the language of TMs, you
will not see the forest for the trees.

Can one generalize Turing machines so that any algorithm, never mind how ab-
stract, can be modeled by a generalized machine very closely and faithfully? The
obvious answer seems to be no. The world of algorithms is too diverse even if one
restricts attention to sequential algorithms as I did at the time. But suppose such
generalized Turing machines exist. What would their states be? The huge experi-
ence of mathematical logic indicates that any kind of static mathematical reality
can be faithfully represented as a first-order structure. So states could be first-
order structures. The next question was what instructions should the generalized
machines have? Can one get away with only a bounded set of instructions? Here I
made the crucial observation: if we stick to one abstraction level (abstracting from
low-level details and being oblivious to a possible higher-level picture) and if the
states of the algorithm reflect all the pertinent information, then a particular small
instruction set suffices in all cases. Hence “A New Thesis” [Gurevich 1985].

I thought of a computation as an evolution of the state. It is convenient to
view relations as special functions. First-order structures with purely functional
vocabulary are called algebras in the science of universal algebra. Accordingly the
new machines were called dynamic structures, or dynamic algebras, or evolving
algebras. The last name was the official name for a while, but then the evolving
algebra community changed it to abstract state machines, or ASMs.

Even the original abstract state machines could be nondeterministic and could in-
teract with the environment [Gurevich 1991]. Then parallel and multi-agent ASMs
were introduced [Gurevich 1995]. Initially, ASMs were used to give dynamic se-
mantics to various programming languages. Later, applications spread into many
directions [Börger and Huggins 1998]. The ability to simulate arbitrary algorithms
on their natural levels of abstraction, without implementing them, makes ASMs
appropriate for high-level system design and analysis [Börger 1995; Börger 1999].
Many of the non-proprietary applications of ASMs can be found at [ASM Michigan
Webpage ].

One will also find a few papers on the ASM theory in the bibliography [Börger
and Huggins 1998]. One relevant issue is the independence of data representation.
Consider for example graph algorithms. Conventional computation models [Savage
1998] require that a graph be represented in one form or another, e.g. as a string
or adjacency matrix, even in those cases when the algorithm is independent of the
graph representation. Using ASMs (especially parallel ASMs) one can program
such algorithms in a representation-independent way; see [Blass et al. 1999] in this
connection.

This article is devoted to the original sequential ASM thesis that every sequen-
tial algorithm can be step-for-step simulated by an appropriate sequential ASM. An
article on the ASM thesis for parallel computations is in preparation. The main
thrust of the present article is the formalization of the notion of sequential algo-
rithm. Turing’s thesis was one underpinning of (and a shining model for) this work.
The other underpinning was the notion of (first-order) structure [Tarski 1933]. The
ASM model is an attempt to incorporate dynamics into the notion of structure.
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By default, in this article, algorithms are supposed to be sequential, and only
sequential ASMs will be introduced here. So far, experimental evidence seems to
support the thesis. There is also a theoretical, speculative justification of the thesis.
It was barely sketched in the literature (see [Gurevich 1991] for example), but,
through the years, it was discussed at greater length in various lectures of mine. I
attempted to write down some of those explanations in the dialog [Gurevich 1999].
This is a streamlined journal version of the justification. This article does not
presuppose familiarity with ASMs.

An Overview of the Rest of the Article

In Section 2, we give a brief history of the problem of formalizing the notion of
sequential algorithm. In Sections 3, 4 and 5 we formulate the Sequential Time
Postulate, the Abstract State Postulate and the Bounded Exploration Postulate
respectively. We argue that every sequential algorithm satisfies the three postulates.
In Section 6, we analyze what it takes to simulate an arbitrary sequential algorithm.
This leads us to the notion of sequential abstract state machine. The theorem in
the title is derived from the three postulates.

Section 7 contains various remarks on ASMs. In Section 8, we generalize the Main
Theorem to algorithms interacting with their environments. In Section 9, we argue
that nondeterministic algorithms are special interactive algorithms and thus the
generalization to interactive algorithms covers nondeterministic algorithms. Nev-
ertheless, explicit nondeterminism may be useful. We proceed to generalize our
treatment of deterministic sequential algorithms to boundedly nondeterministic se-
quential algorithms. This requires a slight change in the sequential-time postulate
and an enhancement of the ASM programming language. In the appendix, we de-
rive the bounded-exploration postulate from a seemingly weaker version of it (and
from the sequential-time and abstract-state postulates).
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2. A BRIEF HISTORY OF THE PROBLEM

It is often thought that the problem of formalizing the notion of sequential algorithm
was solved by Church [1936] and Turing [1936]. For example, according to Savage
[1987], an algorithm is a computational process defined by a Turing machine. But
Church and Turing did not solve the problem of formalizing the notion of sequential
algorithm. Instead they gave (different but equivalent) formalizations of the notion
of computable function, and there is more to an algorithm than the function it
computes.
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Remark 2.1. Both Church and Turing were interested in the classical deci-
sion problem (find an algorithm that decides whether a given first-order formula
is valid), a central problem of logic at the time [Börger et al. 1996]. They used
the formalization of the notion of computable function to prove the unsolvability
of the classical decision problem. In particular, Turing put forward a thesis that
every computable function is computable by a Turing machine. He proved that
no Turing machine computes the validity of first-order formulas. By the thesis,
validity is not computable. Notice that the Church-Turing formalization is liberal:
a Church-Turing computable function may be incomputable in any practical sense.
But their formalization makes undecidability results possible. �

Of course, the notions of algorithm and computable function are intimately re-
lated: by definition, a computable function is a function computable by an algo-
rithm. Both Church and Turing spoke about arbitrary algorithms. By the stronger
Turing thesis mentioned in the Introduction, every algorithm can be simulated by
a Turing machine. Furthermore, the computational complexity experts agree that
any algorithm can be simulated by a Turing machine with only polynomial slow-
down. But a Turing machine may work much too long, with its head creeping back
and forth on that infinite tape, in order to simulate one step of the given algorithm.
A polynomial slowdown may be unacceptable.

While Turing analyzed a human computer, Kolmogorov and Uspensky [1958]
arrived at their machine model (KU machines) by analyzing computations from
the point of view of physics. Every bit of information has to be represented in
physical space and can have only so many neighboring bits. One can think of a
KU machine as a generalized Turing machine where the tape is a reconfigurable
graph of bounded degree. Turing machines cannot simulate KU machines efficiently
[Grigoriev 1976]. Kolmogorov and Uspensky did not formulate any thesis. In a
paper dedicated to the memory of Kolmogorov, I attempted to do that for them:
“every computation, performing only one restricted local action at a time, can be
viewed as (not only being simulated by, but actually being) the computation of an
appropriate KU machine” [Gurevich 1988]. Uspensky [1992, p. 396] agreed.

Influenced by Conway’s “Game of Life”, Gandy [1980] argued that Turing’s anal-
ysis of human computations does not apply directly to mechanical devices. Most
importantly, a mechanical device can be vastly parallel. Gandy put forward four
principles which any such machine must satisfy. “The most important of these,
called ‘the principle of local causality’, rejects the possibility of instantaneous action
at a distance. Although the principles are justified by an appeal to the geometry of
space-time, the formulation is quite abstract, and can be applied to all kinds of au-
tomata and to algebraic systems. It is proved that if a device satisfies the principles
then its successive states form a computable sequence.” Gandy’s work provoked
an interesting discussion in the logic community; I will address these issues in the
forthcoming article on the ASM thesis for parallel computations.

Apparently unaware of KU machines, Schönhage [1980] introduced his storage
modification machines closely related to pointer machines of Knuth [1968, pp. 462–
463]. The Schönhage machine model can be seen as a generalization of the KU
model where the graph is directed and only the out-degree of vertices is bounded.
This generalization is natural from the point of view of pointer computations on
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our computers. From the physical point of view, it is not so natural that one node
may be accessed directly by an unbounded number of other nodes1. In any case,
the abstraction level of Schönhage’s model is higher than that of the KU model. It
is unknown whether every Schönhage machine can be step-for-step simulated by a
KU machine.

The random access machines of Cook and Reckhow [1973] are more powerful
than Schönhage’s machines. Additional computation models are found in [Savage
1998].

In applications, an algorithm may use powerful operations — matrix multipli-
cation, discrete Fourier transform, etc. — as givens. On the abstraction level of
the algorithm, such an operation is performed within one step and the trouble of
actual execution of an operation is left to an implementation. Further, the state
of a high-level algorithm does not have to be finite (which contradicts the first of
Gandy’s principles). There exist computation model with high-level abstractions.
For example, the computation model of Blum, Shub, and Smale [1989] deals directly
with genuine reals. High-level descriptions of parallel algorithms are developed in
[Chandy and Misra 1988].

I sought a machine model (with a particular programming language) such that
any sequential algorithm, however abstract, could be simulated step-for-step by a
machine of that model. Let us call such a model universal with respect to sequential
algorithms. Turing’s model is universal with respect to computable functions, but
not with respect to algorithms. In essence, the sequential ASM thesis is that the
sequential ASM model is universal with respect to sequential algorithms. I don’t
know any other attempt to come up with a model of sequential algorithms which
is universal with respect to sequential algorithms in that strong sense.

3. SEQUENTIAL TIME

This is the first of three sections on the formalization of the notion of sequential
algorithm on a fixed level of abstraction. Here we formulate our first postulate.

3.1 Syntax

We assume informally that any algorithm A can be given by a finite text that
explains the algorithm without presupposing any special knowledge. For example,
if A is given by a program in some programming language PL, then the finite text
should explain the relevant part of PL in addition to giving the PL program of A.
We make no attempt to analyze such notations. There is already a bewildering
variety of programming languages and various other notations to write algorithms,
let alone notations that may or will be used. We will concentrate on the behavior
of algorithms.

1One can also question how faithfully the KU model reflects physical restrictions. In a finite-
dimensional Euclidean space, the volume of a sphere of radius n is bounded by a polynomial of
n. Accordingly, one might expect a polynomial bound on the number of vertices in any vicinity
of radius n (in the graph theoretic sense) of any state of a given KU machine, but in fact such
a vicinity may contain exponentially many vertices. That fact is utilized in Grigoriev’s paper
mentioned above.
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3.2 Behavior

Let A be a sequential algorithm.

Postulate 1 (Sequential Time). A is associated with

—a set S(A) whose elements will be called states of A,
—a subset I(A) of S(A) whose elements will be called initial states of A, and
—a map τA : S(A) −→ S(A) that will be called the one-step transformation of A.

The three associates of A allow us to define the runs of A.

Definition 3.1. A run (or computation) of A is a finite or infinite sequence

X0, X1, X2, . . .

where X0 is an initial state and every Xi+1 = τA(Xi).

We abstract from the physical computation time. The computation time reflected
in sequential-time postulate could be called logical. The transition from X0 to X1 is
the first computation step, the transition from X1 to X2 is the second computation
step, and so on. The computation steps of A form a sequence. In that sense the
computation time is sequential.

Definition 3.2. Algorithms A and B are equivalent if S(A) = S(B), I(A) =
I(B) and τA = τB .

Corollary 3.3. Equivalent algorithms have the same runs.

In other words, equivalent algorithms have the same behavior. We study al-
gorithms up to the equivalence relation. Since the behavior of an algorithm is
determined by the three associates, it does not matter what the algorithm itself is.

3.3 Discussion

3.3.1 States. To us, states are full instantaneous descriptions of the algorithm.
There is, however, a tendency to use the term state in a more restricted sense. A
programmer may speak about the initial, waiting, active, etc. states of a software
component even though these states are not full instantaneous descriptions of the
component. We would prefer to speak instead about the initial, waiting, active,
etc. modes of the component. It is said sometimes that Turing machines have only
finitely many states. From our point of view, the set of states of a Turing machine
is usually infinite. It is the finite control of the machine that has only finitely many
configurations, but a state of the machine reflects not only the current control
configuration but also the current tape configuration and the current position of
the read/write head.

Call a state X of an algorithm A reachable if X occurs in some run of A. The set
of reachable states of A is uniquely determined by I(A) and τA. We do not assume,
however, that S(A) consists of reachable states only. Intuitively, S(A) is the set
of a priori states of the algorithm A. Often it is simpler than the set of reachable
states and thus more convenient to deal with. For example, a state of a Turing
machine can be given by any string uaqv where q is the current control state, a is
the symbol in the currently observed cell and u, v are strings in the tape alphabet
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(so that the tape is the string uav followed by an infinite tail of blanks). Not all
of these states are reachable in general, and in fact the state reachability problem
for a Turing machine may be undecidable. On the other hand, the restriction to
reachable states would be fine for the purpose of this paper.

In applications, a system can be seen in many ways. It may involve different
abstraction levels. Deciding what the states of the system are involves choosing
one of those abstraction levels.

3.3.2 Termination. It is often required that an algorithm halts on all inputs; see
[Savage 1987] for example. However many useful algorithms are not supposed to
terminate. One mathematical example is the sieve of Eratosthenes that produces
prime numbers. Accordingly we do not require that an algorithm halts on all inputs.
But of course, a given algorithm A may have terminating runs. We stipulate that
τA(X) = X if A terminates in a state X.

Alternatively, in addition to S(A), I(A) and τA, we could associate a set T (A)
of final states with the algorithm A. It would be natural then to restrict τA to
S(A) − T (A). For the sake of simplicity, we don’t do that. This will make the
introduction of an active environment a little easier. Imagine that A arrives at a
state X that is final as far as A is concerned, but then the environment changes the
state, and the computation resumes. Was X truly final? We avoid that issue as
well as the issue of intended final states versus error states. Besides, it is convenient
that the transformation τA is total. This disregard of final states is not intrinsic to
the ASM theory. We do not hesitate to make final states explicit when necessary
or convenient [Blass and Gurevich 1997].

3.3.3 Idle Moves. Can a run can have idle moves so that Xi+1 = τA(Xi) = Xi?
It does not matter for our purposes in this paper. Idle rules play little role in
sequential computations. Once an idle move happens, it will repeat to the end, if
any, of the run. For the sake of simplicity, we rule out idle moves here. (Idle rules
play a more important role in multi-agent computations, but that is a different
story.)

3.3.4 Equivalence. One may argue that our notion of the equivalence of algo-
rithms is too fine, that a coarser equivalence relation could be appropriate. Con-
sider, for example, the following two simple algorithms A and B. Each of them
makes only two steps. A assigns 1 to x and then assigns 2 to y, while B first
assigns 2 to y and then assigns 1 to x. According to our definition, A and B are
not equivalent. Is this reasonable? The answer depends on one’s goals. Our goal
is to prove that for every algorithm there is an equivalent abstract state machine.
The finer the equivalence, the stronger the theorem. A coarser equivalence would
do as well; the theorem will remain true.

3.4 What’s Left?

The fact that an algorithm is sequential means more than sequential time. There
is something else.

Consider for example the graph reachability algorithm that iterates the following
step. It is assumed that, initially, only the distinguished vertex Source satisfies the
unary relation R.
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do for all x, y with Edge(x, y) ∧R(x) ∧ ¬R(y)
R(y) := true

The algorithm is sequential-time but it is highly parallel, not sequential. A se-
quential algorithm should make only local changes, and the total change should be
bounded.

The bounded-change requirement is not sufficient either. Consider the following
graph algorithm which checks whether the given graph has isolated points.

if ∀x ∃y Edge(x, y) then Output := false
else Output := true

The algorithm changes only one Boolean but it explores the whole graph in one
step and thus isn’t sequential. A sequential algorithm should be not only bounded-
change, but also bounded-exploration. Furthermore, the work performed by the
algorithm during any one step should be bounded.

Some people find it convenient to speak in terms of actions. Notice that the
one-step transformation of an algorithm may consist of several distinct actions.
For example, a Turing machine can change its control state, print a symbol at the
current tape cell, and move its head, all in one step. Is it true that every action
can be split into atomic actions? If yes then it might be reasonable to require that
the one-step transformation consists of a bounded number of atomic actions. We
are going to address these issues.

4. ABSTRACT STATES

Until now, states were merely elements of the set of states. To address the issues
raised in the previous subsection, we look at the notion of state more closely. We
argue that states can be viewed as (first-order) structures of mathematical logic.
This is a part of our second postulate, the abstract states postulate.

4.1 Structures

The notion of (first-order) structure is found in textbooks on mathematical logic.
We use a slight modification of the classical notion [Gurevich 1991].

4.1.1 Syntax. A vocabulary is a finite collection of function names, each of a
fixed arity. Some function names may be marked as relational . Every vocabulary
contains the equality sign, and nullary names true, false, undef, and unary
name Boole, and the names of the usual Boolean operations. With the exception
of undef, all these logic names are relational.

Terms (more exactly ground terms; by default, terms are ground in this article)
are defined by the usual induction. A nullary function name is a term. If f is a
function name of positive arity j and if t1, . . . , tj are terms, then f(t1, . . . , tj) is a
term. If the outermost function name is relational, then the term is Boolean.

4.1.2 Semantics. A structureX of vocabulary Υ is a nonempty set S (the base set
of X) together with interpretations of the function names in Υ over S. Elements
of S are also called elements of X. A j-ary function name is interpreted as a
function from Sj to S, a basic function of X. We identify a nullary function
with its value. Thus, in the context of a given structure, true means a particular
element, namely the interpretation of the name true; the same applies to false
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and undef. It is required that true be distinct from the interpretations of the
names false and undef. The interpretation of a j-ary relation R is a function
from Sj to {true, false}, a basic relation of X. The equality sign is interpreted
as the identity relation on the base set. Think about a basic relation R as the
set of tuples ā such that R(ā) = true. If relation R is unary it can be viewed
as a universe. Boole is (interpreted as) the universe {true, false}. The Boolean
operations behave in the usual way on Boole and produce false if at least one
of the arguments is not Boolean. undef allows us to represent intuitively-partial
functions as total.

Remark 4.1. One can stipulate that undef is the default value for the Boolean
operations. Then Boolean operations become partial relations. While partial oper-
ations are natural, the tradition in mathematical logic is to deal with total relations.
In a typed framework, which we do not consider in this article, one can have types
of total relations as well as types of partial relations. �

A straightforward induction gives the value Val(t,X) of a term t in a structure
X whose vocabulary includes that of t. If Val(t,X) = Val(t′, X), we may say that
t = t′ in X. If t = true (resp. t = false) in X, we may say that t holds or is true
(resp. fails or is false) in X.

4.1.3 Isomorphism. Let X and Y be structures of the same vocabulary Υ. Recall
that an isomorphism from X onto Y is a one-to-one function ζ from the base
set of X onto the base set of Y such that f(ζx1, . . . , ζxj) = ζx0 in Y whenever
f(x1, . . . , xj) = x0 in X. Here f ranges over Υ, and j is the arity of f .

4.2 The Abstract State Postulate

Let A be a sequential algorithm.

Postulate 2 (Abstract State).

—States of A are first-order structures.

—All states of A have the same vocabulary.

—The one-step transformation τA does not change the base set of any state.

—S(A) and I(A) are closed under isomorphisms. Further, any isomorphism from
a state X onto a state Y is also an isomorphism from τA(X) onto τA(Y ).

In the rest of this section, we discuss the four parts of the postulate.

4.3 States as Structures

The huge experience of mathematical logic and its applications indicates that any
static mathematical situation can be faithfully described as a first-order structure.
It is convenient to identify the states with the corresponding structures. Basic
functions which may change from one state of a given algorithm to another are
called dynamic; the other basic functions are static. Numerous examples of states
as structures can be found in the ASM literature [Börger and Huggins 1998]. Here
we give only two simple examples.
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4.3.1 Example: Turing Machines. A state of a Turing machine can be formalized
as follows. The base set of the structure includes the union of disjoint universes

Control ∪ Alphabet ∪ Tape

which is disjoint from {true, false, undef}.

—Control is (or represents) the set of states of the finite control. Each element
of Control is distinguished, that is, has a (nullary function) name in the vocab-
ulary. In addition, there is a dynamic distinguished element CurrentControl
that “lives” in Control. In other words, we have the nullary function name
CurrentControl whose value may change from one state to another.

—Alphabet is the tape alphabet. Each element of Alphabet is distinguished as
well. One of these elements is called Blank.

—Tape can be taken to be the set of integers (representing tape cells). It comes with
the unary operations Successor and Predecessor. (We assume for simplicity
that the tape is infinite both ways.) There is also a dynamic nullary function
name Head that takes values in Tape.

Finally, we have a unary function

Content : Tape → Alphabet

which assigns Blank to all but finitely many cells (and which assigns undef to every
element outside of Tape ).

The following self-explanatory rule reflects a Turing instruction:

if CurrentControl = q1 and Content(Head) = σ1 then
do-in-parallel

CurrentControl := q2
Content(Head) := σ2
Head := Successor(Head)

The whole program of a Turing machine can be written as a do-in-parallel block
of rules like that. In the sequel, do-in-parallel is abbreviated to par.

4.3.2 Example: The Euclidean algorithm. The Euclidean algorithm computes
the greatest common divisor d of two given natural numbers a and b. One step of
it can be described as follows:

if b = 0 then d := a
else if b = 1 then d := 1
else

par
a := b
b := a mod b

The base set of any state X of the algorithm includes the set of natural numbers
which comes with 0, 1 as distinguished elements and with the binary operation
mod. In addition, there are three dynamic distinguished elements a, b and d. If
a = 12, b = 6, d = 1 in X, then a = 6, b = 0, d = 1 in the next state X ′, and
a = 6, b = 0, d = 6 in the following state X”.
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4.3.3 Logician’s Structures. For the logician, the structures introduced in this
section are first-order structures. There are other structures in logic, e.g. second-
order and higher-order. Sometimes those other structures may be appropriate to
represent states. Consider, for example, a graph algorithm that manipulates not
only vertices but also sets of vertices. In this case, second-order structures are
appropriate. However, second-order structures, higher-order structures, etc. can
be seen as special first-order structures. In particular, the second-order graph
structures needed for the graph algorithm can be viewed as two-sorted first-order
structures where elements of the first sort are vertices and elements of the second
sort are vertex sets. In addition to the edge relation on the first sort, there is also
a cross-sort binary relation ε(x, y) expressing that a vertex x belongs to a vertex
set y.

The term “first-order structure” may be misleading. It reflects the fact that the
structures in question are used to give semantics to first-order logic. In the case of
two-sorted graph-structures above, there is no first-order sentence that expresses
that every vertex set is represented by an element of the second sort. But this
does not matter for our purposes. We use first-order structures without limiting
ourselves to first-order logic. This is a common practice in mathematics; think for
example about graph theory, group theory or set theory.

4.4 Fixed Vocabulary

In logic, the vocabularies are not necessarily finite. In our case, by definition,
vocabularies are finite. This reflects the informal assumption that the program of
an algorithm A can be given by a finite text.

The choice of the vocabulary is dictated by the chosen abstraction level. In a
proper formalization, the vocabulary reflects only truly invariant features of the
algorithm rather than details of a particular state. In particular, the vocabulary
does not change during the computation. One may think about a computation
as an evolution of the initial state. The vocabulary does not change during that
evolution.

Is it reasonable to insist that the vocabulary does not change during that evo-
lution? One can imagine an algorithm that needs more and more functions or
relations as it runs. For example, an algorithm that colors a graph may need more
colors for larger graphs. It is natural to think of colors as unary relations. Thus
we have a growing collection of unary relations. Notice, however, that the finite
program of the coloring algorithm must provide a systematic way to deal with col-
ors. For example, the colors may form an extensible array of unbounded length.
Mathematically this gives rise to a binary relation C(i, x) where the set of vertices
of the ith color is {x : C(i, x)}. In general, if an algorithm needs more and more
j-ary functions of some kind, it may really deal with a (j + 1)-ary function. Al-
ternatively, it may be appropriate to treat these j-ary functions as elements of a
special universe.

There are also so-called self-modifying or “non-von-Neumann” algorithms which
change their programs during the computation. For such an algorithm, the so-
called program is just a part of the data. The real program changes that part of
the data, and the real program does not change.
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4.5 Inalterable Base Set

While the base set can change from one initial state to another, it does not change
during the computation. All states of a given run have the same base set. Is this
plausible? There are, for example, graph algorithms which require new vertices to
be added to the current graph. But where do the new vertices come from? We can
formalize a piece of the outside world and stipulate that the initial state contains
an infinite naked set, the reserve. The new vertices come from the reserve, and thus
the base set does not change during the evolution.

Who does the job of getting elements from the reserve? The environment. In an
application, a program may issue some form of a NEW command; the operating
system will oblige and provide more space. Formalizing this, we can use a special
external function to fish out an element from the reserve. It is external in the sense
that it is controlled by the environment.

Even though the intuitive initial state may be finite, infinitely many additional
elements have muscled their way into the initial structure just because they might be
needed later. Is this reasonable? I think so. Of course, we can abandon the idea of
inalterable base set and import new elements from the outside world. Conceptually
it would make no difference. Technically, it is more convenient to have a piece of
the outside world inside the state.

It is not the first time that we reflect a piece of the outside world inside the
structure. We assumed the structure contained (the denotations of) true and
false which allowed us to represent relations as Boolean-valued functions. The
intuitive state might have relations without containing their values; think about
a graph for example. Similarly, we assumed that the structure contained undef
which allowed us to represent intuitively-partial functions as total.

4.6 Up-to-Isomorphism Abstraction

The last part of the abstract-state postulate consists of two statements. It reflects
the fact that we are working at a fixed level of abstraction. A structure should be
seen as a mere representation of its isomorphism type; only the isomorphism type
matters. Hence the first of the two statements: distinct isomorphic structures are
just different representations of the same isomorphic type, and if one of them is a
state of the given algorithm A then the other should be a state of A as well2. The
details of how the given state represents its isomorphism type are of no importance.
If they are, then the current abstraction level was chosen wrongly. The details that
matter should be made explicit. The vocabulary and the basic functions should be
readjusted.

To address the second statement, suppose that X and Y are distinct states of
the algorithm A and ζ is an isomorphism from X onto Y . ζ maps the base set
of X onto the base set of Y , and ζ preserves all functions of X. For example, if
f(a) = b in X, then f(ζa) = ζb in Y . Since the base set is inalterable, the base sets
of τA(X), τA(Y ) are those of X,Y respectively. The question is whether ζ preserves

2This, a set-theorist may point out, requires a proper class of states because any state has a
proper class of isomorphic copies. The problem can be avoided by fixing some immense set and
considering only structures whose elements are in this set. Alternatively S(A) and I(A) can be
allowed to be proper classes. We will just ignore the problem.
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the functions of τA(X). View Y as just another representation of X. An element x
of X is represented by an element ζx of Y . But the representation of a state should
not matter. To continue the example, suppose that τA sets f(a) to c in X, so that
f(a) = c in τA(X). In the ζ-presentation of X (that is in Y ), τA sets f(ζa) to ζc,
so that f(ζa) = ζc in τA(Y ).

5. BOUNDED EXPLORATION

5.1 States as Memories

It is convenient to think of a structure X as a memory of a kind. If f is a j-ary
function name and ā is a j-tuple of elements of X, then the pair (f, ā) is a location.
ContentX(f, ā) is the element f(ā) in X.

If (f, ā) is a location of X and b is an element of X, then (f, ā, b) is an update
of X. The update (f, ā, b) is trivial if b = ContentX(f, ā). To execute an update
(f, ā, b), replace the current content of location (f, ā) with b.

Two updates clash if they refer to the same location but are distinct. A set of
updates is consistent if it has no clashing updates. To execute a consistent set of
updates, execute simultaneously all updates in the set. To execute an inconsistent
set of updates, do nothing. The result of executing an update set ∆ over X will be
denoted X + ∆.

Lemma 5.1. If X,Y are structures of the same vocabulary and with the same
base set, then there is a unique consistent set ∆ of nontrivial updates of X such
that Y = X + ∆.

Proof . X and Y have the same locations. The desired ∆ is

{(f, ā, b) : b = ContentY (f, ā) �= ContentX(f, ā)}. �

The set ∆ will be denoted Y −X.

5.2 The Update Set of an Algorithm at a State

Let X be a state of an algorithm A. By the abstract-state postulate, X and τA(X)
have the same elements and the same locations. Define

∆(A,X) ⇀↽ τA(X) −X

so that τA(X) = X + ∆(A,X).

Lemma 5.2. Suppose that ζ is an isomorphism from a state X of A onto a state
Y of A, and extend ζ in the obvious way so that its domain contains also tuples of
elements, locations, updates and update sets of X. Then ∆(A, Y ) = ζ(∆(A,X)).

Proof . Use the last part (up-to-isomorphism abstraction) of the abstract-state
postulate. �

5.3 The Accessibility Principle

By default, terms are ground (that is contain no variables) in this article, but this
subsection is an exception.

According to the abstract-state postulate, an algorithm A does not distinguish
between isomorphic states. A state X of A is just a particular implementation of
its isomorphism type. How can A access an element a of X? One way is to produce
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a ground term that evaluates to a in X. The assertion that this is the only way
can be called the sequential accessibility principle.

One can think of other ways that A can access an element a of a state. For
example, there could be Boolean terms ϕ and ψ(x) such that ϕ is ground, and x is
the only free variable in ψ(x), and the equation ψ(x) = true has a unique solution
in every state X satisfying ϕ. If this information is available to A, it can evaluate
ϕ at a given state X and then, if ϕ holds in X, point to the unique solution a of the
equation ψ(x) = true by producing the term ψ(x). This involves a magical leap
from the Boolean term ψ(x) to the element a. To account for the magic, introduce
a new nullary function name c for the unique solution of the equation ψ(x) = true
in the case that ϕ holds; otherwise c may be equal to undef. If we allow ϕ and
ψ(x) to have parameters, we will need to introduce a new function name of positive
arity. This leads to a proper formalization of the given algorithm that does satisfy
the sequential accessibility principle.

Definition 5.3. An element a of a structure X is accessible if a = Val(t,X)
for some ground term t in the vocabulary of X. A location (f, ā) is accessible if
every member of the tuple ā is accessible. An update (f, ā, b) is accessible if both
the location (f, ā) and the element b are accessible.

The accessibility principle and the informal assumption that any algorithm has
a finite program indicate that any given algorithm A examines only a bounded
number of elements in any state. Indeed, every element examined by A should be
named by a ground term, but a finite program can mention only so many ground
terms. This is not a formal proof, and we have no intention of analyzing the syntax
of programs. So we do not elevate the accessibility principle to the status of a
postulate, but it is a motivation for the bounded exploration postulate.

5.4 The Bounded Exploration Postulate

We say that two structures X and Y of the same vocabulary Υ coincide over a set
T of Υ-terms if Val(t,X) = Val(t, Y ) for all t ∈ T . The vocabulary of an algorithm
is the vocabulary of its states. Let A be a sequential algorithm.

Postulate 3 (Bounded Exploration). There exists a finite set T of terms
in the vocabulary of A such that ∆(A,X) = ∆(A, Y ) whenever states X,Y of A
coincide over T .

Intuitively, the algorithm A examines only the part of the given state which is
given by means of terms in T . The set T itself is a bounded-exploration witness for
A.

Example. The non-logic part of the vocabulary of an algorithm A consists of the
nullary function name f , unary predicate name P and unary function name S.

A canonic state of A consists of the set of natural numbers and three additional
distinct elements (called) true, false, undef. S is the successor relation on
natural numbers. P is a subset of natural numbers. f evaluates to a natural
number.

An arbitrary state of A is isomorphic to one of the canonic states. Every state
of A is initial. The one-step transformation is given by the program
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if P (f) then f := S(f)

Clearly, A satisfies the sequential-time and abstract-state postulates. To show
that it satisfies the bounded-exploration postulate, we need to exhibit a bounded-
exploration witness. It may seem that the set T0 ⇀↽ {f, P (f), S(f)} is such a
witness for A, but it is not. Indeed, let X be a canonic state of A where f = 0 and
P (0) holds. Set a ⇀↽ Val(true, X) and b ⇀↽ Val(false, X), so that Val(P (0), X) =
Val(true, X) = a. Let Y be the state obtained from X by reinterpreting true as
b and false as a, so that Val(true, Y) = b and Val(false, Y) = a. The value of
P (0) has not been changed: Val(P (0), Y ) = a, so that P (0) fails in Y . Then X,Y
coincide over T0 but

∆(X,A) �= ∅ = ∆(Y,A).

The set T = T0 ∪ {true} is a bounded exploration witness for A.

6. ANALYSIS OF THE POSTULATES, ABSTRACT STATE
MACHINES, AND THE MAIN THEOREM

Until now, the notion of sequential algorithm was informal. Now we are ready to
formalize it.

Definition 6.1. A sequential algorithm is an object A that satisfies the
sequential-time, abstract-state and bounded-exploration postulates.

We analyze an arbitrary algorithm A. Let Υ be the vocabulary of A. In this
section, all structures are Υ-structures and all states are states of A.

Let T be a bounded-exploration witness for A. Without loss of generality, we
assume the following.

—T is closed under subterms: if t1 ∈ T and t2 is a subterm of t1 then t2 ∈ T .
—T contains the logical terms true, false, undef.

Call terms in T critical. For every state X, the values of critical terms in X will
be called critical elements of X.

Lemma 6.2. If (f, (a1, . . . , aj), a0) is an update in ∆(A,X), then all elements
a0, . . . , aj are critical elements of X.

Proof . By contradiction, assume that some ai is not critical. Let Y be the
structure isomorphic to X which is obtained from X by replacing ai with a fresh
element b. By the abstract-state postulate, Y is a state. Check that Val(t, Y ) =
Val(t,X) for every critical term t. By the choice of T , ∆(A, Y ) equals ∆(A,X)
and therefore contains the update (f, (a1, . . . , aj), a0). But ai does not occur in Y .
By (the inalterable-base-set part of) the abstract-state postulate, ai does not occur
in τA(X) either. Hence it cannot occur in ∆(A, Y ) = τA(Y ) − Y . This gives the
desired contradiction. �

Since the set of critical terms does not depend on X, there is a finite bound
on the size of ∆(A,X) that does not depend on X. Thus, A is bounded-change.
Further, every update in ∆(A,X) is an atomic action. (Indeed, the vocabulary
and the base set of a state do not change during the computation. Only basic
functions do. To change a state in a minimal possible way so that the result is a
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legal structure, change one basic function at one place, i.e., change the content of
one location. That is exactly what one update does.) Thus ∆(A,X) consists of a
bounded number of atomic actions.

To program individual updates of ∆(A,X), we introduce update rules.

Definition 6.3. An update rule of vocabulary Υ has the form

f(t1, . . . , tj) := t0

where f is a j-ary function symbol in Υ and t0, . . . , tj are terms over Υ. To fire
the update rule at an Υ-structure X, compute elements ai = Val(ti, X) and then
execute the update (f, (a1, . . . , aj), a0) over X.

By virtue of Lemma 6.2, every update in ∆(A,X) can be programmed as an
update rule. To program the whole ∆(A,X), we need a rule that allows us to
execute all updates in ∆(A,X) in parallel, as a single transaction. This leads us to
a par construct.

Definition 6.4. If k is any natural number and R1, . . . , Rk are rules of vocab-
ulary Υ, then

par
R1
R2
...
Rk

endpar

is a rule of vocabulary Υ. To fire the par rule at an Υ-structure X, fire the
constituent rules R1, . . . , Rk simultaneously.

The par rules are called blocks. The empty block (with zero constituent rules)
is abbreviated to skip. For the purpose of programming update sets ∆(A,X),
we will need only blocks with update-rule constituents, but the extra generality
of Definition 6.4 will be useful to us. To give more rigorous semantics to rules,
we define the update set ∆(R,X) that a rule R of vocabulary Υ generates at any
Υ-structure X.

Definition 6.5. If R is an update rule f(t1, . . . , tj) := t0 and ai = Val(ti, X)
for i = 0, . . . , j then

∆(R,X) ⇀↽ {(f, (a1, . . . , aj), a0)}.

If R is a par rule with constituents R1, . . . , Rk, then

∆(R,X) ⇀↽ ∆(R1, X) ∪ · · · ∪ ∆(Rk, X).

Corollary 6.6. For every state X, there exists a rule RX such that

1. RX uses only critical terms, and

2. ∆(RX , X) = ∆(A,X).

In the rest of this section, RX is as in the corollary.
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Lemma 6.7. If states X and Y coincide over the set T of critical terms, then

∆(RX , Y ) = ∆(A, Y ).

Proof . We have

∆(RX , Y ) = ∆(RX , X) = ∆(A,X) = ∆(A, Y ).

The first equality holds because RX involves only critical terms and because critical
terms have the same values in X and Y . The second equality holds by the definition
of RX . The third equality holds because of the choice of T and because X and Y
coincide over T . �

Lemma 6.8. Suppose that X,Y are states and ∆(RX , Z) = ∆(A,Z) for some
state Z isomorphic to Y . Then ∆(RX , Y ) = ∆(A, Y ).

Proof . Let ζ be an isomorphism from Y onto an appropriate Z. Extend
ζ to tuples, locations, updates and set of updates. It is easy to check that
ζ(∆(RX , Y )) = ∆(RX , Z). By the choice of Z, ∆(RX , Z) = ∆(A,Z). By
Lemma 5.2, ∆(A,Z) = ζ(∆(A, Y )). Thus ζ(∆(RX , Y )) = ζ(∆(A, Y )). It remains
to apply ζ−1 to both sides of the last equality. �

At each state X, the equality relation between critical elements induces an equiv-
alence relation

EX(t1, t2) ⇀↽ Val(t1, X) = Val(t2, X)

over critical terms. Call states X,Y T -similar if EX = EY .

Lemma 6.9. ∆(RX , Y ) = ∆(A, Y ) for every state Y T -similar to X.

Proof . By Lemma 6.8, it suffices to find a state Z isomorphic to Y with
∆(RX , Z) = ∆(A,Z).

First we consider a special case where Y is disjoint from X, that is where X
and Y have no common elements. Let Z be the structure isomorphic to Y that is
obtained from Y by replacing Val(t, Y ) with Val(t,X) for all critical terms t. (The
definition of Z is coherent: if t1, t2 are critical terms, then

Val(t1, X) = Val(t2, X) ⇐⇒ Val(t1, Y ) = Val(t2, Y )

because X and Y are T -similar.) By the abstract-state postulate, Z is a state.
Since X and Z coincide over T , Lemma 6.7 gives ∆(RX , Z) = ∆(A,Z).

Second we consider the general case. Replace every element of Y that belongs
to X with a fresh element. This gives a structure Z that is isomorphic to Y and
disjoint from X. By the abstract-state postulate, Z is a state. Since Z is isomorphic
to Y , it is T -similar to Y and therefore T -similar to X. By the first part of this
proof, ∆(RX , Z) = ∆(A,Z). �

For every state X, there exists a Boolean term ϕX that evaluates to true in a
structure Y if and only if Y is T -similar to X. The desired term asserts that the
equality relation on the critical terms is exactly the equivalence relation EX . Since
there are only finitely many critical terms, there are only finitely many possible
equivalence relations EX . Hence there is a finite set {X1, . . . Xm} of states such
that every state is T -similar to one of the states Xi.
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To program A on all states, we need a single rule that is applied to every state X
and has the effect of RX at X. This leads naturally to the if-then-else construct
and to conditional rules.

Definition 6.10. If ϕ is a Boolean term over vocabulary Υ and R1, R2 are rules
of vocabulary Υ then

if ϕ then R1
else R2
endif

is a rule of vocabulary Υ. To fire R at any Υ-structure X, evaluate ϕ at X. If the
result is true then ∆(R,X) = ∆(R1, X); otherwise ∆(R,X) = ∆(R2, X). �

The else clause may be omitted if R2 is skip. Such if-then rules would suffice
for our purposes here, but the extra generality will be useful. In this article, we
will usually omit the keywords endpar and endif.

A sequential ASM program Π of vocabulary Υ is just a rule of vocabulary Υ.
Accordingly, ∆(Π, X) is well defined for every Υ structure X.

Lemma 6.11 (Main Lemma). For every sequential algorithm A of vocabulary
Υ there is an ASM program Π of vocabulary Υ such that ∆(Π, X) = ∆(A,X) for
all states X of A.

Proof . Let X1, . . . , Xm be as in the discussion following Lemma 6.9. The
desired Π is

par
if ϕX1 then RX1

if ϕX2 then RX2

...
if ϕXm then RXm

The lemma is proved. �

Nesting if-then-else rules gives an alternative proof of the Main Lemma. The
desired Π could be

if ϕX1 then RX1

else if ϕX2 then RX2

...
else if ϕXm then RXm

Given a program Π, define

τΠ(X) ⇀↽ X + ∆(Π, X).

Definition 6.12. A sequential abstract state machine B of vocabulary Υ is
given by

—a program Π of vocabulary Υ,
—a set S(B) of Υ-structures closed under isomorphisms and under the map τΠ,
—a subset I(B) ⊆ S(B) that is closed under isomorphisms,
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—the map τB which is the restriction of τΠ to S(B).

It is easy to see that an abstract state machine satisfies the sequential-time,
abstract-state and bounded-exploration postulates. By Definition 6.1, it is an al-
gorithm. Recall the definition of equivalent algorithms, Definition 3.2.

Theorem 6.13 (Main Theorem). For every sequential algorithm A, there ex-
ists an equivalent sequential abstract state machine B.

Proof . By the Main Lemma, there exists an ASM program Π such that
∆(Π, X) = ∆(A,X) for all states X of A. Set S(B) = S(A) and I(B) = I(A). �

7. REMARKS ON ABSTRACT STATE MACHINES

7.1 Constructivity

Traditionally it is required in the foundations of mathematics that inputs to an
algorithm be constructive objects (typically strings) and that the states of an al-
gorithm have constructive representations. One champion of that tradition was
Markov [1954]. As we mentioned in Section 2, these constructivity requirements
may be too restrictive in applications, especially in high-level design and speci-
fication. We abstract from the constructivity constraints. ASMs are algorithms
which treat their states as databases or oracles. In that — very practical — sense,
ASMs are executable. A number of non-proprietary tools for executing ASMs can
be found at [ASM Michigan Webpage ]. The abstraction from the constructivity
requirements contributed both to the simplicity of the definition of ASMs and to
their applicability.

7.2 Additional Examples of ASM Programs

Two ASM programs were given earlier in Section 4. Here are three additional
examples.

7.2.1 Maximal Interval Sum. The following problem and the mathematical so-
lution are borrowed from [Gries 1990]. Suppose that A is a function from
{0, 1, . . . , n−1} to real numbers and i, j, k range over {0, 1, . . . , n}. For all i ≤ j, let
S(i, j) ⇀↽

∑
i≤k<j

A(k). In particular, every S(i, i) = 0. The problem is to compute

S ⇀↽ max
i≤j

S(i, j) efficiently. Define y(k) ⇀↽ max
i≤j≤k

S(i, j). Then y(0) = 0, y(n) = S

and

y(k + 1) = max{ max
i≤j≤k

S(i, j), max
i≤k+1

S(i, k + 1)}

= max{y(k), x(k + 1)}

where x(k) ⇀↽ max
i≤k

S(i, k), so that x(0) = 0 and

x(k + 1) = max{max
i≤k

S(i, k + 1), S(k + 1, k + 1)}

= max
{

max
i≤k

(
S(i, k) +A(k)

)
, 0

}

= max
{(

max
i≤k

S(i, k)
)

+A(k), 0
}
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= max{x(k) +A(k), 0}

Since y(k) ≥ 0, we have

y(k + 1) = max{y(k), x(k + 1)} = max{y(k), x(k) +A(k)}

Assume that nullary dynamic functions k, x, y equal zero in the initial state. The
desired algorithm is

if k �= n then
par

x := max{x+A(k), 0}
y := max{y, x+A(k)}
k := k + 1

else S := y

7.2.2 A Higher-Level View of Turing Machines. Let Alphabet, Control,
Tape, Head and Content be as in the example on Turing machines in Section 4. Re-
tire Successor and Predecessor. Instead introduce a subuniverse Displacement
= {−1, 0, 1} of Tape, each element of which is distinguished, and a binary func-
tion + of type Tape × Displacement → Tape with the obvious meaning. Every
Turing machine gives rise to finite functions

NewControl : Control × Alphabet → Control
NewSymbol : Control × Alphabet → Alphabet
Displace : Control × Alphabet → Displacement

Taking these three functions (extended properly by means of the default value
undef) as givens, leads us to the following higher-level view of Turing machines:

par
CurrentControl := NewControl(CurrentControl,Content(Head))
Content(Head) := NewSymbol(CurrentControl,Content(Head))
Head := Head + Displace(CurrentControl,Content(Head))

7.2.3 Markov’s Normal Algorithms. A normal algorithm A operates on strings
of a given alphabet Σ. It is given by a sequence of productions

x1 → y1, . . . , xn → yn

where every xi and every yi are Σ-strings. Some of the productions can be marked
as final. States of A are Σ-strings. To perform one step of A at a state Z do the
following. Check if any xi is a contiguous segment of Z. If not, halt. If yes, find
the least such i and find the first occurrence of xi in Z. Let Pre(xi, Z) be the part
of Z before the first occurrence of xi and let Post(xi, Z) be the part of Z after the
first occurrence of xi, so that

Z = Pre(xi, Z) ∗ xi ∗ Post(xi, Z)

where ∗ is the concatenation operation on strings. Replace Z with a new state

Pre(xi, Z) ∗ yi ∗ Post(xi, Z).

If the ith production is final, halt.



The Sequential ASM Thesis · 21

Normal algorithms do not satisfy Gandy’s principle of local causality. “The
process of deciding whether a particular substitution is applicable to a given word
is essentially global” [Gandy 1980]. Let Occurs(x, Z) be the Boolean test of whether
x occurs in Z as a contiguous segment. Markov treats this test and the functions
Pre, Post and ∗ as givens, and so will we. Introduce a universe String of all
strings over the alphabet Σ and stipulate that Pre(x, Z) = Post(x, Z) = undef if
Occurs(x, Z) = false.

It is easy to see how to program any normal algorithm over Σ. For example, the
normal algorithm

x1 → y1, x2 → y2, x3 → y3

where none of the productions is final, can be programmed thus:

if Occurs(x1, Z) then Z := Pre(x1, Z) ∗ y1 ∗ Post(x1, Z)
else if Occurs(x2, Z) then Z := Pre(x2, Z) ∗ y2 ∗ Post(x2, Z)
else if Occurs(x3, Z) then Z := Pre(x3, Z) ∗ y3 ∗ Post(x3, Z)

7.3 The let Construct

An ASM rule R of vocabulary Υ can be seen as an algorithm all by itself. The states
of R are arbitrary Υ-structures, and every state is initial. τR(X) = X + ∆(R,X).
Accordingly, two rules of vocabulary Υ are equivalent if and only if they generate
the same update set ∆(X) at every Υ-structure X. For example,

if ϕ
then R1
else R2

is equivalent to
par

if ϕ then R1
if ¬ϕ then R2

Notice that the latter rule is more verbose, especially in the case of large ϕ. This
brings us to the issue of more concise programs. A let rule

let x = t
R(x)

saves one the trouble of writing and evaluating the term t over and over again.
Here x is a fresh nullary function name that occurs neither in R nor in t. This is
one example of syntactic sugar used in ASM programming. In the simplified ASM
framework described above,

let x = t
R(x) is equivalent to R(t)

where R(t) is the result of simultaneous substitution of t for every occurrence of x
in R(x).

7.4 Sequential Composition and the Linear Speedup Theorem

In conventional programming languages, sequential composition allows one to com-
bine pieces of different granularities: trees, and forests, and bushes, and grass. As
a result, programs may become hard to understand. A sequential ASM program Π
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describes only one computation step. This unusual programming style helps one to
stick to one abstraction level3.

In principle, however, sequential composition can be incorporated into the ASM
paradigm. One step of the rule

seq
R1
R2

consists of two successive substeps. The second substep may overwrite some changes
made during the first substep. If a clash occurs at either substep, the whole step is
aborted.

It is easy to see that programs in the enriched language satisfy our three postu-
lates, and thus seq can be eliminated. In fact, there is a uniform way of eliminating
seq. Similarly one can prove the linear speedup theorem for the original ASM lan-
guage:

Theorem 7.1. For every program Π1, there is a program Π2 of the same vocab-
ulary such that τΠ2(X) = τΠ1(τΠ1(X)) for every Υ-structure X.

The existing ASM-executing tools avoid the seq construct, partially for clar-
ity and partially for technical reasons. Most of the tools implement the powerful
parallel do-for-all construct [Gurevich 1995; Gurevich 1997], which makes im-
plementation of seq expensive. Other constructs with a flavor of sequentiality, e.g.
let, have been more popular.

7.5 ASMs and Recursion

A common question is whether ASMs can handle recursion. We view recursive
computations being implicitly multi-agent and treat them accordingly [Gurevich
and Spielmann 1997].

7.6 Inconsistent Update Sets

Let ∆ be an inconsistent update set over a structureX. We stipulated thatX+∆ =
X, so that the effect of ∆ is that of the empty update set. There are reasonable
alternatives to the stipulation; one may want to manifest inconsistency in one
way or another [Gurevich 1995]. In practice, the simple stipulation seems to work
well. If desired, manifestations of inconsistency can be programmed. In any case,
inconsistent update sets do not arise in the proof of the main theorem, and thus
the issue is irrelevant to this paper.

7.7 Typed Abstract State Machines

First-order structures are versatile. Our version of the notion of structure supports
informal typing. However, there are pragmatic reasons to introduce explicit typing;
most programming languages followed this route. The issue of typed ASMs has
been and is being explored. See [ASM Michigan Webpage ] in this connection. You
will find there ASM-executing tools (e.g. AsmGofer, ASM Workbench) that use
typed versions of the ASM programming language.

3This unusual style may be convenient for programming highly distributed systems where an agent
cannot compute much without a danger of being interrupted.
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8. ALGORITHMS INTERACTING WITH THEIR ENVIRONMENTS

Until now we have considered non-interactive algorithms. Here we incorporate
active environments into the picture. The definition of an algorithm as something
that satisfies the three postulates (Definition 6.1) does not change. The definition
of the equivalence of algorithms (Definition 3.2) does not change either. What does
change is the definition of runs. Corollary 3.3 (equivalent algorithms have the same
runs) will remain true. The Main Theorem will remain true.

8.1 Active Environment

8.1.1 Example. The following interactive version of the Euclidean algorithm re-
peatedly computes the greatest common divisor.

par
if Mode = Initial then

a := Input1, b := Input2, Mode := Compute
if Mode = Compute then

if b = 0 then d := a, Mode := Wait
else if b = 1 then d := 1, Mode := Wait
else a := b, b := a mod b

In a state with Mode = Wait, the algorithm waits for the environment to intervene,
to change Mode to Initial and to update Input1 and Input2. It is assumed that
the environment satisfies the following constraints: it intervenes only when Mode
= Wait; the only functions affected by it are Mode, Input1 and Input2; it can
change Mode only to Initial; Input1 and Input2 have to be natural numbers.
The constraints allow the environment to be non-deterministic. It may be for
example that the third pair of inputs equals the first pair of inputs but the fourth
pair of inputs differs from the second pair.

8.1.2 Agents. It may be convenient to think of computations of an interactive
program as plays in a two-player game where one player is the agent executing
our program, let us call it α, and the other player is the active environment. In
reality, many agents could be involved. Relationships among the agents may involve
both cooperation and competition. Furthermore, new agents may be created and
old agents may be removed. Elsewhere we deal with multiple agents explicitly
[Gurevich 1995]. In the sequential paradigm, agents are implicit. The environment
accounts for the actions of all outside agents (that is all agents distinct from our
agent α) as well as for some global constraints.

8.2 Interactive Runs

An interactive algorithm can input and output data as it runs. We can abstract
from the output phenomenon. As far as our algorithm is concerned, the output
is miraculously taken away. To account for the input phenomenon, we modify the
definition of run given in Section 3. A run of a non-interactive algorithm can be
viewed as a sequence

µ1, µ2, µ3, . . .

of non-idle moves (or non-idle steps) of the algorithm. The moves of an interactive
algorithm A may be interspersed with moves of the environment. For example, A
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may have a run

µ1, ν1, µ2, ν2, µ3, ν3, . . .

where A makes the µ moves and the environment makes the ν moves, so that we
have a sequence

X0, X1, X
′
1, X2, X

′
2, X3, X

′
3, . . .

of states where X0 is an initial state, X1 = τA(X0), X ′
1 is obtained from X1 by an

action of the environment, X2 = τA(X ′
1), X

′
2 is obtained from X2 by an action of

the environment, and so on.
It may seem strange that the environment should act only between the steps of

the algorithm. In Example 8.1.1, the environment may prepare new Input1 and
Input2 during the time that the algorithm works on the old Input1 and Input2.
Our definition of run reflects the point of view of the executor of the given algorithm.
He will not see the new inputs until he finishes with the old ones. As far as he is
concerned, the new inputs appear after he finishes with the old ones. Different
agents may see the same computation very differently.

One can argue that a run should not start or finish with a move of the environ-
ment, that every move by the environment should be followed by a move of the
algorithm. This is reasonable but these details are immaterial for our purposes in
this paper.

It is easy to see that the Main Theorem, Theorem 6.13, remains valid. There is
no need to reconsider any of the postulates.

8.3 New Elements

According to the discussion on inalterable base sets in Section 4, new elements
are imported by the environment and a special external function is used for the
purpose. It may be convenient to hide the external function. To this end, create
(formerly import) rules are used [Gurevich 1991]:

create x
R(x)

Typically a create rule is used to extend some particular universe U which
gives rise to the extend U abbreviation. For example, consider a Turing machine
with finite tape where Last is the rightmost cell. An instruction may involve an
extension of the tape:

extend Tape with x
par

Successor(Last) := x
Predecessor(x) := Last
Last := x
...

Instead of importing new elements from the reserve (or from the outside world for
that matter), it may be convenient to deal with a virtual world that has everything
that the computation may possibly need. You never create new elements but rather
discover or activate them [Blass et al. 1999].
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8.4 Discussion

In applications, the environment usually satisfies stringent constraints. The defini-
tion of vocabulary in [Gurevich 1995] allows one to mark function names as static;
these functions do not change during the computation. In the example above, it
would be natural to declare the nullary functions names 0, 1, Initial, Compute,
Wait and the binary function name mod static. Another typical constraint is that
the environment satisfies the type discipline of a sort.

Basic dynamic functions (those that can change during the computation are
partitioned into

—internal, those whose values can be changed only by the algorithm,

—external, those whose values can be changed only by the environment, and

—shared, those whose values can be changed both by the environment and the
algorithm.

(In some applications, it is convenient to call internal functions controlled and ex-
ternal functions monitored [Börger 1999]). In the example above, a, b, d are internal,
Input1 and Input2 are external, and Mode is shared. The same terminology applies
to locations.

The executor of our algorithm may need to consult the environment in the middle
of executing a step. For example, after evaluating various guards, the executor may
discover that he needs the environment to create new elements and/or make some
choices. Of course we may pretend that the environment did all the necessary
work before the algorithm started the execution of the step. But a refinement of
our definition of interactive runs may be useful. This issue will be addressed in
[Gurevich 2000].

9. NONDETERMINISTIC SEQUENTIAL ALGORITHMS

9.1 How Can Algorithms be Nondeterministic?

Nondeterministic algorithms are useful, for example, as higher level descriptions
(specifications) of complicated deterministic algorithms. But an algorithm is sup-
posed to be an exact recipe for execution. How can it be non-deterministic? Let
us analyze that apparent contradiction.

Imagine that you execute a nondeterministic algorithm A. In a given state, you
may have several alternatives for your action and you have to choose one of the
available alternatives. The program of A tells you to make a choice but gives
no instructions how to make the choice. What can you do? You can improvise
and, for example, flip a coin to direct the choice. You can write an auxiliary
program to make choices for you. You can ask somebody to make choices for
you. Whatever you do, you bring something external to the algorithm. In other
words, it is the active environment that makes the choices. Monitored functions
can be used to manifest the choices made by the active environment. In that sense,
nondeterminism has been handled already. Nondeterministic algorithms are special
interactive algorithms.
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9.2 Bounded-Choice Nondeterminism

It may be convenient to pretend that the choices are made by an algorithm itself
rather than by the environment. In the case of sequential algorithms where the
one-step transformation is supposed to be bounded-work, it is natural to require
that nondeterminism is bounded, so that, at each step, the choice is limited to
a bounded number of alternatives. Nondeterministic Turing machines are such
bounded-choice nondeterministic algorithms.

Modify slightly the sequential-time and abstract-state postulates to obtain the
nondeterministic versions of these two postulates. Now τA is a binary relation over
S(A), and the last two parts of the nondeterministic abstract-state postulate are
as follows.

—If (X,X ′) ∈ τA then the base set of X ′ is that of X.
—S(A) and I(A) are closed under isomorphisms. Further, let ζ be an isomorphism

from a state X onto a state Y . For every state X ′ with (X,X) ∈ τA, there is a
state Y ′ with (Y, Y ′) ∈ τA such that ζ is an isomorphism from X ′ onto Y ′.

A bounded-choice nondeterministic algorithm is an object A that satisfies the
nondeterministic sequential-time and abstract-state postulates and the unchanged
bounded-exploration postulate. Check that, for every such algorithm A, there is a
natural number k such that, for every X ∈ S(A), the set {Y : (X,Y ) ∈ τA} has at
most k members.

Extend the programming language of deterministic sequential ASMs with the
choose-among construct:

choose among
R1
· · ·
Rk

Call bounded-choice nondeterministic algorithms A and B equivalent if S(A) =
S(B), I(A) = I(B) and τA = τB . It is easy to see that Main Theorem remains
valid in the case of bounded-choice nondeterministic algorithms.

A more powerful choose construct that may require unbounded exploration is
given in [Gurevich 1995].

APPENDIX

A. FINITE EXPLORATION

Assuming the sequential-time and abstract-state postulates, we derive the bounded-
exploration postulate from seemingly weaker hypotheses. To this end, we do not
require in this appendix that an algorithm satisfies the bounded-exploration pos-
tulate: an algorithm is defined as any object that satisfies the sequential-time and
abstract-state postulates. Logically this appendix belongs at the end of Section 5
but we deferred it to avoid interrupting the main discussion.

Definition A.1. An algorithm A of vocabulary Υ is finite-exploration if there
is a map T that assigns a finite set T (X) of Υ-terms to each state X of A in such
a way that the following two requirements are satisfied.
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(1) ∆(A, Y ) = ∆(A,X) for every state Y of A that coincides with X over T (X).
(2) If X,Y are two states of A then either T (X) = T (Y ) or else there are terms
t1, t2 in T (X) ∩ T (Y ) whose values are equal in one of the states and different
in the other.

Intuitively the first requirement is that, at each step, A examines only the finite
part of the current state X which is given by the terms in T (X). Notice that the
set T (X) may vary with the state X.

The second requirement reflects the determinism of A. Andreas Blass suggested
the following scenario. The state is a database. At each step, the executing agent
of A queries the database and computes the appropriate updates. The updates may
be conveyed to the database e.g. in the form of update rules. But what can the
agent learn? Since (by the abstract-state postulate) the internal presentations of
the elements of the state are of no importance, the agent can learn only that such
and such terms have the same value, and such and such terms have different values.
The (one-step) computations of the agent at states X and Y can branch apart if
the agent discovers that some terms t1, t2 have equal values in one of the two states
and different values in the other. Otherwise the computations are identical, and
therefore T (X) = T (Y ).

Call an algorithm A bounded-exploration if it satisfies the bounded-exploration
postulate. In other words, A is bounded-exploration if and only if it is finite-
exploration with a finite exploration witness T such that T (X) does not depend
on X.

What happens if a finite-exploration algorithm A with a finite-exploration witness
T is applied to an Υ-structure Y that is not a state of A? Since A and Y have the
same vocabulary, the queries of the execution agent should make sense in Y . The
agent may learn that such and such terms have the same value in Y , and such and
such terms have different values in Y . Two possibilities arise.

—There is a state X such that Y coincides with X over T (X). In this case, Y
could be called a pseudo-state of A (with respect to T ).

—There is no state X such that Y coincides with X over T (X). In this case, Y
could be called an error state4 of A (with respect to T ).

For emphasis, states of A may be called legal states. We are interested in algorithms
which can distinguish between legal states and error states in the following sense.

Definition A.2. An algorithm A of vocabulary Υ is discriminating if there is
a map T that assigns a finite set T (X) of Υ-terms to each Υ-structure X in such
a way that the following requirements are satisfied.

—T is a finite-exploration witness5 for A.
—If Y is an error state of A with respect to T , then no legal state of A coincides

with Y over T (Y ).

4An error state is not a state. Such a terminology is not that uncommon. A red herring is often
not a herring and not necessarily red either.
5Or the restriction of T to legal states is a finite-exploration witness. We don’t have to require in
Definition A.1 that the domain of T is limited to the states of A.
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If A is a bounded-exploration algorithm with bounded-exploration witness T ,
then A is discriminating with T (X) ⇀↽ T .

Example A.3. Suppose that A is an algorithm of vocabulary Υ whose non-logic
part consists of nullary function name 0, unary function name f and nullary relation
name parity. An Υ-structure X is a legal state of A if the set S(X) of the values
of terms 0, f(0), f(f(0)), . . . is finite in X. A state X of A is initial if parity =
false in X. A performs only one step. If the cardinality of S(X) is even, parity
is set to true; otherwise there is no change.

It is easy to see that A is finite-exploration. However, A is not discriminating.
Consider a Υ-structure Y where the terms 0, f(0), f(f(0)), . . . have distinct values.
Y is an error state but, for every set T of Υ-terms, there is a large enough legal
state of A that coincides with Y over T . �

Theorem A.4. Every discriminating algorithm is bounded-exploration.

Proof . Let A be a discriminating algorithm. We will obtain a bounded-
exploration witness T for A. We will use

—the compactness theorem for first-order logic found in standard textbooks on
mathematical logic, and

—the fact, proved in standard textbooks on topology, that the Cantor space is
compact.

To recall, the Cantor space consists of infinite sequences ξ = 〈ξi : i ∈ N〉 where N
is the set {0, 1, . . .} of natural numbers and each ξi ∈ {0, 1}. Every function f from
a finite set of natural numbers to {0, 1} gives a basic open set

O(f) ⇀↽ {ξ : ξi = f(i) for all i ∈ Domain(f)}
of the Cantor space. An arbitrary open set of the Cantor space is the union of a
collection of basic open sets O(f).

Let Υ be the vocabulary of A, and let T be a discrimination witness for A. In
this proof, terms and structures are of vocabulary Υ, states are those of A, pseudo-
states are pseudo-states of A with respect to T , and error states are error states of
A with respect to T .

Lemma A.5. Suppose that X,Y are legal states and Z is a pseudo-state. If Z
coincides with X over T (X) and with Y over T (Y ), then T (X) = T (Y ).

Proof . All three structures coincide over T (X) ∩ T (Y ). By the second condi-
tion of Definition A.1, T (X) = T (Y ). �

Definition A.2 imposes no restrictions on the sets T (Y ) where Y ranges over
pseudo-states. Due to Lemma A.5, we may assume this: if a pseudo-state Y coin-
cides with a legal state X over T (X) then T (Y ) = T (X).

Corollary A.6. If a legal state X coincides with a structure Y over T (Y ),
then T (X) = T (Y ).

Proof . By the second requirement of Definition A.2, Y cannot be an error
state. We consider the two remaining cases.

Case 1: Y is a legal state. Use the second requirement of Definition A.1.
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Case 2: Y is a pseudo-state. Then there exists a legal state Z such that Y coincides
with Z over T (Z) and therefore T (Y ) = T (Z). Hence X coincides with Z over
T (Z). Then, as in Case 1, T (X) = T (Z). Hence T (X) = T (Y ). �

Call a term equational if it has the form t1 = t2. List all equational terms in
some order:

e1, e2, e3, . . . .

Each structure X gives rise to a binary sequence χX where χX
i = 1 if ei holds in

X, and χX
i = 0 if ei fails in X.

Let O(X) be the basic open subset of the Cantor space that consists of sequences
ξ with ξi = χX

i for every equation ei such that both sides of ei belong to T (X).

Lemma A.7. Let ξ be a binary sequence that does not belong to any O(X). There
exists an open set O(ξ) that contains ξ and is disjoint from every O(X).

Proof . Consider a first-order system of axioms in vocabulary Υ which contains
the usual equality axioms and includes the infinite set

D ⇀↽ {ϕi : i = 1, 2, 3, . . .}

where ϕi is ei if ξi = 1, and ϕi is ¬ei if ξi = 0.
If every finite subset of D is satisfiable, then — by the compactness theorem for

first-order logic — D is satisfiable and therefore has a model X. But then ξ ∈ O(X)
which contradicts our assumption about ξ.

Hence there is a finite unsatisfiable fragment D0 of D. The desired O(ξ) consists
of all sequences ξ′ such that ξ′

i = ξi for all i with ϕi ∈ D0. �

The open sets O(X) and O(ξ) cover the Cantor space. Since Cantor space is
compact, it is covered by a finite collection of these open sets. Therefore there is a
finite collection {X1, . . . , Xk} of states such that

{χX : X is a state} ⊆ O(X1) ∪ · · · ∪O(Xk).

The set T = T (X1)∪· · ·∪T (Xk) witnesses that A is bounded-exploration. Indeed,
let states Y and Z coincide over T . There exists i ∈ {1, . . . , k} such that Y ∈ O(Xi),
so that Y coincides with Xi over T (Xi). By Corollary A.6, T (Y ) = T (Xi), so that
T (Y ) ⊆ T . It follows that Z coincides with Y over T (Y ). By the first requirement
of Definition A.1, ∆(A, Y ) = ∆(A,Z). That completes the proof of the theorem.
�

Let A be a finite-exploration algorithm with a finite exploration witness T , and
let Υ be the vocabulary of A. As in the proof of Theorem A.4, terms and structures
are of vocabulary Υ, states are those of A, and pseudo-states (respectively error
states) are pseudo-states (respectively error states) of A with respect to T .

Call two structures similar if no equational term distinguishes between them:
if an equation holds in one of the structures then it holds in the other. For every
structure X, let [X] be the collection of all structures Y similar to X, the similarity
class of X.

Lemma A.8. Every structure similar to an error state is an error state.
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Proof . Suppose that a structure Z is similar to an error state Y . If Z is a
legal state or a pseudo-state, then there is a legal state X such that Z coincides
with X over T (X). Since Y is similar to Z, Y also coincides with X over T (X),
so that Y is a pseudo-state, which contradicts our assumption that Y is an error
state. �

Let the mapping X �→ χX be as in the proof of Theorem A.4. The mapping
[X] �→ χX is one-to-one (but not onto). Use it to define a topological space TS of
the similarity classes of structures; the open sets of TS are the pre-images of the
open sets of the Cantor space.

Theorem A.9. If there is a closed set F in TS such that

—F contains all the similarity classes [X] where X is a legal state, and
—F contains no similarity classes [Y ] where Y is an error state

then A is bounded-exploration.

Proof . Let Y be an error state. The complement of F in TS is an open set
that contains [Y ] but does not contain any [X] where [X] is a legal state. By the
definition of TS, there is an open subset of the Cantor space that contains χY but
does not contain any χX where X is a legal state. Hence there is a basic open set
O(f) that contains χY but does not contain any χX where X is a legal state. Define
T (Y ) to be the set of all subterms of equational terms ei with i ∈ Domain(f). No
legal state X of A coincides with Y over T (Y ); otherwise χX would belong to O(f)
which is impossible.

The extended map T is a discrimination witness for A. By Theorem A.4, A is
bounded-exploration. �
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