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Abstract

Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evo-
lutionary trees (Felsenstein, 1981). Finding optimal ML trees appears to be a very hard
computational task, but for tractable cases, ML is the method of choice. In particular, algo-
rithms and heuristics for ML take longer to run than algorithms and heuristics for the second
major character based criterion, maximum parsimony (MP). However, while MP has been
known to be NP-complete for over 20 years (Graham and Foulds, 1982; Day, Johnson, and
Sankoff, 1986), such a hardness result for ML has so far eluded researchers in the field.

An important work by Tuffley and Steel (1997) proves quantitative relations between the
parsimony values of given sequences and the corresponding log likelihood values. However, a
direct application of their work would only give an exponential time reduction from MP to
ML. Another step in this direction has recently been made by Addario-Berry et al. (2004),
who proved that ancestral maximum likelihood (AML) is NP-complete. AML “lies in between”
the two problems, having some properties of MP and some properties of ML. Still, the AML
proof is not directly applicable to the ML problem.

We resolve the question, showing that “regular” ML on phylogenetic trees is indeed in-
tractable. Our reduction follows the vertex cover reductions for MP (Day et al. ) and AML
(Addario-Berry et al.), but its starting point is an approximation version of vertex cover,
known as gap vc. The crux of our work is not the reduction, but its correctness proof. The
proof goes through a series of tree modifications, while controlling the likelihood losses at each
step, using the bounds of Tuffley and Steel. The proof can be viewed as correlating the value
of any ML solution to an arbitrarily close approximation to vertex cover.

Key words: Maximum likelihood, tree reconstruction, maximum parsimony, intractability, ap-
proximate vertex cover.

1 Background

Molecular data, and even complete genomes, are being sequenced at an increasing pace. This
newly accumulated information should make it possible to resolve long standing questions in
evolution, such as reconstructing the phylogenetic tree of placental mammals and estimating the
times of species divergence. The analysis of this data flood requires sophisticated mathematical
tools and algorithmic techniques. Two character-based methods are widely used in practice: MP
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(maximum parsimony, Fitch, 1971 [11]) and ML (maximum likelihood, Felsenstein, 1981 [8]). It is
known that ML is consistent, namely with high probability, for long enough input sequences, the
correct tree is the tree maximizing the likelihood [10, ch. 16]. Consistency does not hold for MP,
and in fact for certain families of trees (the so called Felsenstein zone [9]) MP will reconstruct
the wrong trees, even for arbitrarily long input sequences. The two methods are known to be
computationally intensive, and exact algorithms are limited to just about n = 20 sequences. This
forces practitioners to resort to heuristics. For both exact algorithms and heuristics, ML seems a
harder problem than MP.

In the absence of concrete lower bound techniques, the major tool for demonstrating com-
putational intractability remains NP hardness proofs. Both MP and ML have well-defined ob-
jective functions, and the related decision problems (or at least discretized versions of them)
are in the complexity class NP. It has been known for over 20 years that MP is NP-complete
[13, 5, 12, 4, 6, 19], (see also [23] and references). The proof of [5] employs an elegant reduc-
tion from vertex cover (VC). However, no such result has been found for ML to date. This is
particularly frustrating in light of the intuition among practitioners that ML is harder than MP.

Tuffley and Steel have investigated the quantitative relations between MP and ML [22]. In
particular, they showed that if the n sequences are padded with sufficiently many zeroes, the ML
and MP trees coincide. Since parsimony is invariant under padding by zeroes, this approach could
in principle lead to a reduction from MP to ML. Unfortunately, the upper bound provided in [22]
on the padding length is exponential in n. A step in a different direction was taken by Addario-
Berry et al. [1]. They studied the complexity of AML (Ancestral Maximum Likelihood)
[17, 24]. This variant of ML is “between” MP and ML in that it is a likelihood method (like
ML) but it reconstructs sequences for internal vertices (like MP). They showed that AML is
NP-complete, using a reduction from (exact) Vertex Cover.

Our NP hardness proof of ML uses ingredients from both [22] and [1], as well as new insights
on the behavior of the likelihood function on trees. The reduction itself is essentially identical to
that given for MP by Day, Johnson, and Sankoff [5], and also used in the AML paper [1]. However,
our starting point is not exact VC but the gap version of it [2, 16]. The proof of correctness for
this reduction relative to ML is different, and substantially more involved. We define a family of
canonical trees. Every such tree is associated with a unique cover in the original graph. We show
that if L is the likelihood of the canonical tree, n is the number of vertices in the original graph,
m is the number of edges in the original graph, and c is the size of the associated cover, then as
n → ∞,

− log(L)
(m + c) log(n)

→ 1 .

In particular, this gives an inverse relation between likelihood and cover size: Larger L implies
smaller c, and vice versa.

When proving the correctness of the reduction, we want to establish two directions: (⇒) If
the original graph has a small cover, then there is a tree with high likelihood, and (⇐) that the
existence of a tree with high likelihood implies the existence of a small cover. The first direction
is easy, using the canonical tree related to the small vertex cover. It is the other direction that
is hard, because there is no obvious relation between the log likelihood of a non-canonical tree
and the size of any cover. What we do, starting from any ML tree, is to apply a sequence of
modifications that leads it to a canonical tree. The whole series of modifications may actually
decrease the likelihood of the resulting, canonical tree vs. the original, ML one. We use the
techniques of [22] to infer likelihood properties from parsimony ones. In particular, we combine
[22] and the degree bound of the original graph to show that in every step, the log likelihood
decreases by at most O(log n) bits. Finally, we show that the total number of modifications is
not too large – at most n/ log log n. This allows us to show that the overall loss in log likelihood
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is at most O(n log n/ log log n). We also show that the log likelihood of the final, canonical tree
is θ(n log n). This implies the ratio of the log likelihood of the last, canonical tree, and the log
likelihood of the ML tree, approaches 1 as n → ∞. This proves that log ML is tightly related to
an approximate vertex cover, establishing the NP hardness of ML.

2 Proof’s Overview

In this section we give a high level description of the hardness proof. The reduction is from
the gap Vertex Cover problem on graphs whose degree is at most three, a problem proved
NP-hard in 1999 by Berman and Karpinski [2, 16].

Given an undirected graph G = (V,E) of max degree 3 with n = |V | nodes and m = |E| ≤ 1.5n
edges, we construct an ML instance, consisting of m + 1 binary strings of length n. The ML
problem is to find a tree with the m+1 sequences at its leaves, and an assignment of substitution
probabilities to the edges of that tree (edges’ length), such that the likelihood of generating the
given sequences is maximized. The proof relates the approximate max log likelihood value to the
size of a vertex cover in G. This approximation is tight enough to enable solving the original
gap problem. Our reduction follows the one for maximum parsimony given by Day, Johnson and
Sankoff [5] and for ancestral ML, given by Addario-Berry et al. [1]. Both reductions were from
the (exact) Vertex Cover problem. In this reduction we generate one string with only 0s, and
m “edge strings” that contain exactly two 1s each, and naturally encodes an edge.

Consider all unrooted weighted trees with m + 1 leaves that have the given sequences at their
leaves. We say that such tree is in canonical form if the following properties hold (see figure 1):

Definition 2.1

1. nal node (called the “root” for clarity, even though the trees are unrooted) that has the all
zero leaf as a son, and the length of the edge going to this leaf is 0.

2. All leaves are one or two tree edges away from the root.

3. If a leaf is two tree edges away from the root, then the subtree that contains that leaf has
two or three leaves. In this case, all two or three sequences at the leaves share a “1” in the
same position.

Canonical trees uniquely define a vertex cover, where each subtree corresponds to one, two,
or three original edges that are covered by one node. (For the subtrees with one leaf, the covering
vertex can correspond to either end point, while for size two and three subtrees, the covering
vertex is uniquely defined.) Consequently, given a tree in canonical form, we can quantify the
size of the corresponding vertex cover of the original graph. The reason we force the root to be
connected to the all zero leaf with an edge of weight 0 is that this way the root itself is “effectively
forced” to the all zero label (with probability 1). This enables us to express the likelihood of
a canonical form tree as a product of the likelihoods of its subtrees. In particular, there is no
influence, or dependency, between different subtrees.

The major part of the proof is showing that given any ML tree, TML, with the given “reduction
sequences” at its leaves, there is a series of local modifications on trees with the given sequences
at their leaves, such that in each modification the log likelihood of the resulting tree is decreased
by at most O(log n) per step, and the final tree, TCA, is in canonical form. The number of
modifications is o(n), which is small enough to establish a tight ratio 1 − o(1) between the max
log likelihood and the log likelihood of the final, canonical tree. In each step, we transform one
tree to another. We identify a small forest, containing between log log n and 2 log log n leaves.
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Figure 1: Canonical (left) and non-canonical (right) trees.

Such a forest is a union of disjoint subtrees that are hung off a common internal node (not the
“root”). Using the bound on the degree of the original graph, we show that the parsimony score
of this forest when its root is labeled by the all zero string can be worse by at most a constant
B < 84 than the score with any other root labeling. Using the results of Tuffley and Steel [22],
and the small size of the subtree, it is possible to unroot this forest, rearrange it, and connect it
directly to the root in a “canonical way”, such that the overall log likelihood of the whole tree
decreases by at most B log n + o(log n). Over the series of n/ log log n modifications, the overall
decrease is at most Bn log n/ log log n+ o(n log n/ log log n) = O(n log n/ log log n). We show that
the log likelihood of the final canonical tree, TCA, is θ(n log n). This is sufficiently large to show
that despite such decrease,

log L(S|TCA)
log L(S|TML)

= 1 − o(1) .

Every tree in canonical form naturally corresponds to a vertex cover in the original graph.
The tight relation between log L(S|TML) and log L(S|TCA) implies a tight relationship between
the size of an approximate vertex cover in the original graph and the maximum likelihood tree
on the given sequences, and establishes the NP hardness of maximum likelihood on phylogenetic
trees.

3 Model, Definitions and Notations

In this section we describe the model and basic definitions that we will use later. These definitions
include phylogenetic trees and characters, the parsimony score, Neyman’s two state model, and
the likelihood function. In most of this paper, we assume that characters are in one of two states,
0 or 1. Let S = [s(1), s(2), s(3), . . . , s(n)] ∈ {0, 1}n×k be the observed sequences of length k
over n taxa (n leaves). Given such sequences, both the maximum parsimony and the maximum
likelihood criteria aim at finding the tree (or trees) that “best explain” this data. Each uses a
different objective function. In this section, both are defined and explained.
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Definition 3.1 (Phylogenetic trees, characters, labelings [22])
A phylogenetic tree with n leaves is a tree T = (V (T ), E(T )) such that each leaf (degree one vertex)
is given a unique label from [n] = {1, ..., n}. A non leaf vertex is called an internal vertex. A
function λ : [n] → {0, 1} is called a state function for T . A function λ̂ : V (T ) → {0, 1} is called
an extension of λ on T if it coincides with λ on the leaves of T . In a similar way, we define a
function λk : [n] �−→ {0, 1}k and an extension λ̂k : V (T ) �−→ {0, 1}k. This later function is called
a labelling of T . If λ̂k(v) = s we say that the string s is the labelling of the vertex v.
Given a labelling λ̂k, let de(λ̂k) denote the number of differences between two the labellings of the
endpoints of the edge e ∈ E(T ).

Definition 3.2 (Maximum parsimony score)
Let T be a tree with n leaves, and S be a set of n binary strings, all of length k. Let λk

pars :
[n] �−→ S be labeling of T ’s leaves: An mapping onto the strings S. Let λ̂k

pars : V (T ) �−→ {0, 1}k

be an extension of λk that minimizes the expression
∑

e∈E(T ) de(λ̂k). We define pars(S, T, λk),
the parsimony score for S, T, λk, as the value of this sum. A maximum parsimony tree (or trees)
for the set of binary strings, S, is a tree (or trees) and leaf labeling that minimizes the sum above
over all trees T and assignments λk of the strings in S to leaves’ labelings. The value of the sum
on this tree is called the parsimony score for the set of strings S.

When the labeling λ̂k is clear, we simply use de instead of de(λ̂k). In the likelihood setting,
we endow edges with “mutation probabilities”. For a tree T , let p = [pe]e∈E(T ) be the edge
probabilities. We use the Neyman two states model [18]. Given labels of length k, each position
j ∈ {1, . . . , k} is called a site. According to this model:

• Leaves’ labels are strings from {0, 1}k.

• The “edge probability” pe satisfies 0 ≤ pe ≤ 1
2 .

• The probability of a net change of state (from ’1’ to ’0’ or vice versa) occurring across an
edge e (a “mutation event”) is given by pe. This probability is also called the “length”, or
“weight”, of edge e.

• Mutation (change) events on different edges are independent.

• Different sites mutate independently.

The likelihood of observing an S ∈ {0, 1}n×k, given the tree T with r ≤ n − 2 internal nodes
and the edge probabilities p, L(S|T,p), is defined as

L(S|T,p) =
k∏

i=1

∑
a∈{0,1}r

∏
e∈E(T )

m(pe, Si, ai) , (1)

where a ranges over all combinations of assigning labels (length k 0 or 1 strings) to the r internal
nodes of T . This notion of ML is termed maximum average likelihood in Steel and Penny [21].
Each term m(pe, Si, ai) is either pe or (1−pe), depending on whether in the i-th site of S and a, the
two endpoints of e are assigned different characters states (and then m(pe, Si, ai) = pe) or the same
characters states (and then m(pe, Si, ai) = 1 − pe). The ML solution (or solutions) for a specific
tree T is the point (or points) in the edge space p = [pe]e∈E(T ) that maximizes the expression
L(S|T,p). The global ML solution is the pair (or pairs) (T,p), maximizing the likelihood over all
trees T of n leaves, labeled by S, and all edge probabilities p (for more details see [8, 20, 22]). By
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the independence of sites, an equivalent way to define the likelihood of observing S in the tree T
is:

L(S|T,p) =
∑

λk∈{0,1}k×r

∏
e∈E(T )

pde(λk)
e · (1 − pe(λk))k−de(λk) (2)

In the rest of the paper we use this definition for likelihood.

4 Properties of Maximum Likelihood Trees

In this section we prove some useful properties of ML trees. We start with properties of general
trees and continue with canonical ones.

4.0.1 General Properties of ML Trees

In our NP-hardness proof we want to show that the ML tree for a set of reduction strings, defined
in the next section, have log likelihood arbitrarily close to the log likelihood of some canonical
tree. We achieve this by a sequence of pruning sub-forests that satisfy certain conditions, and
rearranging them in a canonical way around the ”root”. We will show bound on the decrease in
the log likelihood by such rearrangements. The following Lemma is used several times in the rest
of this paper.

Lemma 4.1 Let T be a phylogenetic tree with edge probabilities p, let S (set of binary string of
length k) denote the labelling for the leaves of the tree. Suppose F1 and F2 are two disjoint forests
that partition T , and have the node x as their common root. Let S1 and S2 be the leaf labellings
of F1 and F2, respectively and let p1, p2 be the induced, corresponding edge probabilities. Let �x

denote a labelling of x. Then the likelihood of observing S given T and p equals

L(S|T,p) =
∑

s∈{0,1}k

L(S1, �x = s|F1,p1) · L(S2, �x = s|F2,p2).

Proof. Follows directly from equation (2).
For “standard” phylogenetic trees, the internal nodes do not have any specified labelling, while

leaves are labelled by a k long sequence. In the course of our modifications we could also have a
leaf with no labelling (see figure 2). The natural way to define the likelihood of a tree with such
leaves is to treat them as internal nodes, namely summing over all their possible labellings. The
next Lemma states that such “unlabelled” leaves can be pruned without effecting the likelihood.

Lemma 4.2 Let T be a phylogenetic tree with an unlabelled leaf. By pruning this leaf (and the
edge connecting to it) we get a tree, T ′, with equal likelihood.

Proof. Let S = {Si} be the set of leaves’ labels (binary strings of length k). Let h be the
unlabelled leaf, and let h′ be its neighbor in T . According to the definition:

Pr(S | T,p) =
∑

s∈{0,1}k

Pr(S, �h = s|T,p)

=
∑

s∈{0,1}k

∑
r∈{0,1}k

Pr(S, �h′ = r|T ′,p) · Pr(�h = s, �h′ = r|p)

=
∑

r∈{0,1}k

Pr(S, �h′ = r|T ′,p)

= Pr(S|T ′,p)
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since
∑

s∈{0,1}k Pr(�h = s, �h′ = r|p) = 1.

Lemma 4.3 Let T be a phylogenetic tree with an internal node, h, of degree two, and let g1, g2 be
its neighbors. Then h can be eliminated to create an (g1, g2) edge without changing the likelihood
of T .

Proof. Let ph,g1 and ph,g2 be the mutation probabilities of the edges (h, g1) and (h, g2), respec-
tively. Set pg1,g2 = ph,g1(1 − ph,g2) + ph,g2(1 − ph,g1). It is easy to see that for 0 ≤ ph,g1, ph,g2 ≤ 1,
we get 0 ≤ pg1,g2 ≤ 1, and that the mutation probability across the path from g1 to g2 does not
change.

Our NP completeness proof heavily uses a sequence of tree modifications. In each modification,
we uproot a forest (a collection of subtrees with a common ancestor), rearrange it, and graft it
on the root of the tree. The following theorem establishes a connection between the likelihood of
the original and the rearranged forest, and the change in the total likelihood of the tree.

Theorem 4.4 Let T be a phylogenetic tree, with edge probabilities p, S a set of labels to its leaves,
such that one of its leaves is labeled by the all zero sequence. Let root denote an internal node on
T that is at distance 0 from this leaf. Suppose T1, .., Tj are a subforest of T , namely a collection
of disjoint subtrees that have a common root, h. Denote by T− the original subforest, let p− be
its edge probabilities, and S− the labels at its leaves. Suppose we uproot T−, rearrange it to a new
subforest, Tnew, and endow the new subforest with edge probabilities pnew. Let Tarranged be the
tree resulting from grafting Tnew onto root (the root of the forest Tnew is the node root), where the
edge probabilities parranged in the ”old” part are as in p. Suppose there is W > 0 such that for
every labelling s of h,

Pr(S−, �h = 0|Tnew,pnew) ≥ W · Pr(S−, �h = s|T−,p−) .

then
Pr(S|Tarranged,parranged) ≥ W · Pr(S|T,p).

Proof. The likelihood of S, given the initial tree, T , and p, is (see Lemma 4.1 ):

L1 ≡ L(S|T,p) = Pr(S|T,p) =
∑

s∈{0,1}k

Pr(S−, �h = s|T−,p−) ·Pr(S \S−, �h = s|T \T−,p\p−) .

10100...� 10010...� 10100...�
Standard tree� Tree with an unlabelled leaf�

Figure 2: Standard and nonstandard trees
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The likelihood of S given Tarranged and parranged equals

L2 ≡ L(S|Tarranged,parranged) = Pr(S|Tarranged,parranged)

=
∑

s∈{0,1}k

Pr(S−, �h = 0k|Tnew,pnew) · Pr(S \ S−, �h = s|Tarranged \ T−,parranged \ pnew) .

According to our assumption, for each s ∈ {0, 1}k ,

Pr(S−, �h = 0k|Tnew,pnew) ≥ W · Pr(S−, �h = s|T−,p−) ,

and thus L2 ≥ W · L1, as desired.

new�T�

0�

Zero length�

1�T�

0�

Zero length�
0�

Zero length�

new�T�

1�T� j�T�

S�
For every s�

h� h�

T�
-�

W�

W�

<�

<�

x�

x�

original�T� arranged�T�

j�T�

Rearrangement�

Root�

Root�

Root�

Figure 3: Theorem 4.4.

The following corollary is a direct result of Theorem 4.4, and uses the same notation.

Corollary 1 Let S− denote the strings at the leaves of T−, and let s denote a labelling of h.
Let T ∗(s), p∗(s), respectively, denote the structure and edge length of a tree that maximize the
likelihood of the strings S− ∪ {s}. Let s∗ be a string that maximizes this likelihood, namely
for all s ∈ {0, 1}k, Pr(S− ∪ {s}|T ∗(s),p∗(s)) ≤ Pr(S− ∪ {s∗}|T ∗(s∗),p∗(s∗)). If Pr(S−, �h =
0k|Tnew,pnew) ≥ W ·Pr(S−∪{s∗}|T ∗(s∗),p∗(s∗)), then Pr(S|Tarranged,parranged) ≥ W ·Pr(S|T,p) .

The proof of the following lemma is immediate.

Lemma 4.5 Let T S
ML, p denote the structure and edges lengths of an ML tree for the set of

strings S. For any s ∈ {0, 1}k, Pr(S ∪ {s}|T S∪{s}
ML ,p′) ≤ Pr(S|T S

ML,p), where T
S∪{s}
ML and p′ are

optimal structure and edge lengths for S ∪ {s}, respectively.

In the following lemma we are interested in the subforest T−, and ignore the rest of the tree.
We are allowed to change the structure of T−, and want to find a labelling s∗ of its root, h, such
that the likelihood of S− ∪ {s∗}, given the new structure of T− is maximized. The maximization
of the likelihood is over all the labelling of h, and over all structures for the subforest. We denote
such a labelling s∗ of h an optimal root labelling.
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Lemma 4.6 Suppose there are sites where the value of all the strings in S− is 0. Then there is
an optimal root labelling s∗ whose value in any of these sites is also 0.

Proof. Let T S−
ML, p− denote the structure and edges lengths of an ML tree for the set of strings

S−. Take any of the leaves in this tree, labeled by some si ∈ S−. Make this leaf into two leaves,
connected by a pair of 0 length, and label the two leaves by si as well. It is not hard to see that
the new tree has exactly the same likelihood as TS−

ML, p−. By lemma 4.5 for any s ∈ {0, 1}k ,

Pr(S− ∪ {s}|T S−∪{s}
ML ,p′) ≤ Pr(S−|T S

ML,p−). Since for s = si we have equality, it follows that
any original string is also an optimal root labeling. In particular, there are optimal root labeling
that have a 0 in any site where all strings in S− have a 0.

For any tree T on m leaves and any observed sequences S, we denote by p∗ the edge prob-
abilities that maximize L(S|T,p). The following Theorem is a restatement of Theorem 7 from
Tuffley and Steel [22].

Theorem 4.7 Let S be a set of m binary strings of length k = kc + knc, where kc is the number
of constant characters in S (i.e. positions that have the same value for all the strings). Let T be
a tree on m leaves. Let pars(S, T ) denote the parsimony score of S on the tree T . Then

2− log(kc)·pars(S,T )−Cd
T,pars(S,T ) ≤ L(S|T )

�
= Pr(S|T,p∗) ≤ 2− log(kc)·pars(S,T )−Cu

T,pars(S,T )

and
lim

kc→∞
− log(Pr(S|T,p∗))

log(kc)
= pars(S, T )

where Cu
T,pars(S,T ), C

d
T,pars(S,T ) = O(kncm + pars(S, T ) log pars(S, T )).

If we hold m fixed and pad the strings in S, then kc increases, but pars(S, T ) remains invariant.
The first terms in the exponents of both the upper and lower bounds become dominant. This
establishes the limit, and furthermore the fact that the ML tree ”converges” to an MP tree.

Corollary 2 Let S contain m binary sequences of length k. Let Ta and Tb be two trees with he
strings of S in their leaves. Let p∗

a and p∗
b denote the optimal edges’ length for S on these two

trees, respectively. Suppose that the strings in S have kc many constant sites. Then there is kc

large enough (it at least should be 2Cu
T,pars(S,T ) = o(kc)) such that pars(S, Ta) < pars(S, Tb) implies

Pr(S|p∗
a, Ta) > Pr(S|p∗

b , Tb).

We remark that in general equality in the parsimony score does not imply equality in the
likelihood. The next corollary generalizes the previous one to general trees with one internal node
that is labelled. (The definition of likelihood for such trees is straightforward, and is omitted.)
Suppose S is a set containing length k strings, which share kc constant positions. The likelihood,
Pr(S, �h = s|F,p∗), of a subforest F with r subtrees T1, .., Tr, sets of labellings of the subtrees’
leaves S1, .., Sr, optimal edges’ lengths p∗, and with a label �h = s at the root of the subforest
(see figure 3) is

Pr(S, �h = s|F,p∗) =
r∏

i=1

Pr(Si, �h = s|p∗, T i) .

Therefore

Pr(S, �h = s|F,p∗) ≥
r∏

i=1

2− log(kc)·pars(Si∪{s},Ti)−Cd
Ti,pars(Si∪{s},Ti) , and
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Pr(S, �h = s|F,p∗) ≤
r∏

i=1

2− log(kc)·pars(Si∪{s},Ti)−Cu
Ti,pars(Si∪{s},Ti) ,

where Cu
Ti,pars(Si∪{s},Ti)

and Cd
Ti,pars(Si∪{s},Ti)

are the functions defined in Theorem 4.7.
Let pars(S ∪ {s}, F ) =

∑
i pars(Si ∪ {s}, Ti), and Cu

S∪{s},F =
∑

i C
u
T i,pars(Si∪{s},Ti)

and let
Cd

S∪{s},F =
∑

i C
d
T i,pars(Si∪{s},Ti)

. Summing up the exponents, we get

Corollary 3

2− log(kc)·pars(S∪{s},F )−Cd
S∪{s},F ≤ Pr(S, �h = s|F,p∗) ≤ 2− log(kc)·pars(S∪{s},F )−Cu

S∪{s},F .

Proof. The proof follows directly from Theorem 4.7 and the properties of our model.

Let S denote the set of labelling of the leaves of a forest F = (V,E). Let knc denote the
number of non constant sites in S ∪ {s}, where �h = s is the labelling at the F ’s root, h. The
”reduction strings” we will deal with have the property that the number of non-constant sights
of the labellings of the forest F is small, namely knc ≤ 2|F |.

In this case by theorem 4.7 and corollary 3 we get the following relationship between the log
likelihood and the parsimony:

log L(S, �h = s|F,p∗) = O(pars(S,F ) · log(kc)) + O(pars(S,F ) · log(pars(S,F ))) + O(|F |2)

4.0.2 Properties of Canonical ML Trees

In this subsection, we study properties related to canonical ML trees (definition 2.1), properties
that play an important role in our reduction. Throughout this section, the strings we deal with
are binary “reduction strings” of length n, originating from a graph of n nodes and m edges.

Definition 4.8 Let TCi (i = 1,2, or 3) be a tree with i + 1 leaves and one internal node (i.e. TCi

has the star topology), such that one of the strings in the leaves is the all zero string (of length
k = n). The other i strings are all of weight 2 (two 1s), and for i > 1 they all share one ”1”
position (see figure 4). Let MLi(n) be the log ML score of TCi for the optimal edges’ length of the
tree. Let SCi denote the strings in the leaves of tree TCi .

It is easy to see that MLi(n) does not depend on the specific choice of strings in TCi .

Lemma 4.9 There are constants Cd ≤ Cu such that for all for n large enough, the following
properties hold:

1. −2 · log(n) + Cd ≤ ML1(n) ≤ −2 · log(n) + Cu

2. −3 · log(n) + Cd ≤ ML2(n) ≤ −3 · log(n) + Cu

3. −4 · log(n) + Cd ≤ ML3(n) ≤ −4 · log(n) + Cu

Proof. The proof follows from Theorem 4.7 and direct calculations.

10
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Figure 4: Building blocks of the maximum likelihood tree for our reduction.

Theorem 4.10 Let S be a set of “reduction strings”, corresponding to a graph with n nodes and
m edges. Let T be a canonical trees with m + 1 leaves, labelled by S. Let d denote the degree of
its root. Let p∗ be optimal edges weights for S with respect to this tree. Then for the constants
Cd ≤ Cu of Lemma 4.9,

−(d + m) · log n + dCd ≤ log Pr(S|T,p∗) ≤ −(d + m) · log n + dCu .

Proof. According to Lemma 4.9, MLi(n), the log likelihood of a subtree Tci with i non-zero
leaves and n long labellings, that is hung off the root of the canonical tree, satisfies

−(i + 1) log(n) + Cd ≤ MLi(n) ≤ −(i + 1) log(n) + Cu .

Since T ’s root is effectively labeled by the all zero vector, the log likelihood of S given T is
obtained by summing all log likelihoods of its d subtrees. All subtrees together have m leaves,
other than the all zero leaf. So the log likelihood of S given T satisfies

−(d + m) log(n) + dCd ≤ log L(S|T,p∗) ≤ −(d + m) log(n) + dCu .

Let S be a set of “reduction strings”, corresponding to a graph with n nodes and m edges.
Let Ta and Tb be two canonical trees with m + 1 leaves, labelled by S. Let da and db denote the
degrees of the roots of these trees, correspondingly. Let p∗a and p∗b be optimal edges weights for
S with respect to these trees. Then for the constants Cd ≤ Cu of Lemma 4.9, the log likelihood
ratio of these trees satisfies

−(da + m) · log n + da · Cd

−(db + m) · log n + db · Cu
≤ log Pr(S|Ta,p∗

a)
log Pr(S|Tb,p∗

b)
≤ −(da + m) · log n + da · Cu

−(db + m) · log n + db · Cd
.

Since da, db ≤ n, both the left hand side and the right hand side converge to (da + m)/(db + m)
as n grows. This implies that for large enough n,

Corollary 4 For any arbitrarily small ε there is n0 large enough such that for all n ≥ n0

da + m

db + m
· (1 − ε) ≤ log Pr(S|p∗a, Ta)

log Pr(S|p∗b , Tb))
≤ da + m

db + m
· (1 + ε).

11



And in particular if da = db, then

limn→∞
log Pr(S|Ta, p

∗
a)

log Pr(S|Tb, p
∗
b))

= 1.

5 NP-Hardness of Maximum Likelihood

Building upon the ML machinery developed so far, we now turn to the proof that ML recon-
struction on trees is NP hard. We start by formally defining the decision version of maximum
likelihood, and then of the gap version of vertex cover we use.

Problem 5.1 Maximum likelihood (ML).
Input: S, A set of binary strings, all of the same length, and a negative number L.
Question: Is there a tree, T , such that log Pr(S|T,p∗(S, T )) > L ?

A gap vertex cover problem is the following:

Problem 5.2 Gap problem for vertex cover, gap − V C[c1, c2]
Input: A graph, G = (V,E), two positive numbers, c1 and c2.
Task: Does G have a vertex cover smaller than c1, or is the size of each vertex cover is larger
than c2 ? (If the minimum vertex cover is in the intermediate range, there is no requirement.)

Our proof emplys a reduction from the gap version of vertex cover, restricted to degree 3 graphs
(undirected graph of degree at most 3 in each node). We rely on the following hardness result of
Karpinski and Berman [2].

Theorem 5.3 [2] The following problem 1, gap−V C3[144284 ·n, 145
284 ·n], is NP-hard: Given a degree

3 graph, G, on n nodes, is the minimum VC of G smaller than 144
284 ·n, or is it larger than 145

284 ·n?

We reduce that specific version of gap − V C3 above to ML.

5.1 Reduction and Proof Outline

Given an instance G = (V,E) of gap−V C3, denote |V | = n, |E| = m, c1 = 144
284 ·n and c2 = 145

284 ·n.
We construct an instance < S,L > of ML such that S is a set of m + 1 strings, each string of
length k = n, and L = −(m + c1+c2

2 ) · log n.
The first string in S consists of all zeros (the all zeros string), 00...0...00︸ ︷︷ ︸

k

, and for every edge

e = (i, j) ∈ E there is a string, S(e) =
i−1︷ ︸︸ ︷

00..00 1

j−i−1︷ ︸︸ ︷
00..00 1

k−j︷ ︸︸ ︷
00..00︸ ︷︷ ︸

k

where the i-th and the j-th positions

are set to 1, and all the rest are set to 0. These m strings are called “edge strings”. From now
on, the trees we refer to have leaves whose labels are generated by this construction.

We use asymptotic properties of likelihood of trees, so most claims will hold when the input
graph is large enough (i.e. n = |V | is large enough). In our proof, we deal with small size subtrees
or forests, containing at most 2 · log log n leaves.

1We could also use the deep gap VC results of Hȧstad [14]) and Dinur and Sufra [7]. However their graphs are of
bounded degree greater than 3 and it seems that the modification to bounded degree 3 graphs would yield smaller
gaps (not effecting the hardness of ML, though).
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We will need the following relation for the expressions in the likelihood of the forests to hold
(see corollary 3):

Cd
S∪{s},F

log(kc) · pars(S ∪ {s}, F )
,

Cu
S∪{s},F

log(kc) · pars(S ∪ {s}, F )
→n→∞ 0

By lemma 4.6 we can assume s have 0 in positions were all the forest’s strings have 0. The
parsimony score (and knc, the number of non-constant sites) of such forest is no more than
4·log log n, thus Cd

S∪{s},F , Cu
S∪{s},F = O((log log n)2). Since kc = O(n) we can use the quantitative

relations between parsimony and likelihood as proved in corollary 3, our proof is strongly relies
on these relations.

5.2 From ML to Canonical Trees

In this section we show that for every ε > 0, there is an n0 > 0 such that for n > n0, the
ratio between the log likelihood and the maximum log likelihood of some canonical tree is upper
bounded by (1 + ε).

Given an ML tree, T , if it is in canonical form, we are done. Otherwise we locate subtrees of
T , T1, T2, ..., T� with a common root, such that the number of leaves in

⋃�
i=1 Ti is in the interval

[log log n, 2 · log log n]. Notice that this is a forest as there may be other subtrees rooted at the
same node. It is easy to show that such a forest always exists (lemma 5.4).

Lemma 5.4 Suppose T is a rooted tree and v is an internal node such that the number of leaves
below v is at least q. Then v has a descendent, u, such that u is the root of a forest consisting
of � subtrees T1, T2, ..., T� (� ≥ 1), and the number of leaves in the forest

⋃�
i=1 Ti is in the range

[q, 2 · q].

The next lemmata, we show that the ratio of the log-likelihood of such forest when the all zero
labelling is placed in its root, and the log-likelihood of the same subforest with the best labelling
in its root, is close to 1.

Lemma 5.5 Let u be an internal node or the root h in F , whose degree is r ≥ 9, and let
s ∈ {0, 1}k. Consider an assignment of labels to internal nodes of F , where h is assigned s.
Among such assignments, those that optimize the parsimony score label u with 0k.

Proof. We assume here u �= h, the case were u = h can be proved in a similar way. It suffices
to prove the claim for every position separately. The internal node u have r − 1 subtrees below
it, and one edge “above” it, leading to h. Out of these subtrees, at most three have “1” in the
position of interest (since our graphs are of degree 3). For the other r−4 > 4 subtrees, since their
leaves have 0 in the position, the most parsimonious assignment will label all their nodes with 0,
as can be seen by running Fitch algorithm [11]. Therefore u has at least five neighbor nodes with
0 in this position, and at most four with 1. Any parsimonious assignment will thus label u with
0.

Lemma 5.6 Let h be the root of a forest F (h has at least two children in F ) whose leaves are
labelled by reduction strings S. Suppose that in each position, the leaves labelled with “1” are at
distance at least 4 from h. Then the max parsimony score for S on F is achievable with the all
zero labelling in h.

Proof. Consider an arbitrary position. Since the reduction strings emanate from a degree 3
graph, there are at most three leaves x,y,z with ’1’ in this position. Let LCA(x, y), LCA(x, y, z)

13



denote the least common ancestors of x, y and x, y, z, respectively (see figure 5). Suppose, without
loss of generality, that LCA(x, y) is equal to LCA(x, y, z) or is below it in F . For any node j in
F , we denote by pa(j) the parent of j. There are three cases:

1. h = LCA(x, y, z) and LCA(x, y) �= LCA(x, y, z): Consider the path from z to h. At most
one feeding node, the one leading to it from LCA(x, y), may be assigned ’1’ in the a optimal
parsimony assignment. There are at least two other nodes feeding to the path. Therefore,
by Fitch algorithm, the best assignment to the nodes in the path from z to h is ’0’. Thus if
we assign ’0’ to h we may lose 1 in the score due to the node just below h in the path between
LCA(x, y) and h, but lose nothing in the score due to the edges to the other children of h.
On the other hand, if we assign ’1’ to h we lose 1 in the score due to the node before last in
the path from z to h, and may lose 1 in the score due to the node just below h in the path
between LCA(x, y) and h. Thus the ’0’ labelling to h is not worse than the ’1’ labelling.

2. h = LCA(x, y, z) and LCA(x, y) = LCA(x, y, z): By Fitch algorithm, the best assignment
to the nodes in the paths from z, y, and x to h is ’0’. If we assign ’1’ to h we loose 1 on
each edge leading to h, a total loss of 3. If we assign ’0’ to h we lose nothing on the node
immediately below to h.

3. h �= LCA(x, y, z):

Since h has at least two children, all the leaves under one of these children are ’0’, so the
algorithm of Fitch assigns ’0’ to this node. Since LCA(x, y, z) is below h, Fitch’s algorithm
will assign “1” to at most one of h children. Thus the ’0’ labelling to h is not worse than
the ’1’ labelling.

h�

'1'� '1'� '1'�

x�y�z�

LCA(x,y)�

LCA(x,y,z)�

Distance > 3�

0�

0�

0�

0�

0�0�

Figure 5: Lemma 5.6, case (3).

Corollary 5 Let h be a root of a subforest F whose leaves are labelled by a set of reduction strings,
S. Consider a specific position, and suppose all leaves having “1” in the position are either at
distance ≥ 4 from the root, or have an internal node of degree ≥ 9 on the path to the root. Then
the parsimony score of F when labelling the root h with 0 at this position is at least as good as
when labelling the root with 1.
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Proof. According to Lemma 5.5, if there is an internal node of degree ≥ 9, it is better to assign
0 to this node. This enables us to disregard the “1” leaves of distance smaller than 4 from h with
a high degree node on their path to h. The other leaves with “1” are at distance at least 4 from
h, and we can now apply Lemma 5.6.

Theorem 5.7 Let T be a tree whose leaves are labelled by a subset of non-zero reduction strings.
Let F be a subforest of T , rooted at h, and let s ∈ {0, 1}k be a label of h. The parsimony score of
F with the 0k labelling at the root can be worse by at most 84 − 1 than the parsimony score of F
with label s at its root.

Proof. If the degree of h is larger than 8, then by Lemma 5.5 the best assignment to h is 0k and
we are done. Otherwise, we say that a leaf in F is dangerous if its distance from h less than 4,
and all its ancestors on the path to h have degree ≤ 8. Simple counting shows that the number
of dangerous leaves in F is smaller than 8 + 82 + 83. Every dangerous leaf has 2 positions where
it is labelled ”1”. Each such position can be ”1” in at most 3 leaves because the graph G is of
degree 3. Therefore for any of these positions, changing the label at h from 1 to 0 will worsen the
parsimony score by at most 3. There are at most 2 · (8 + 82 + 83) such positions. So changing to
0 at h will cause at most 2 · 3 · (8 + 82 + 83) < 84 parsimony degradations. According to Lemma
5, in all other positions, the ”0” label at h is optimal.

The following Lemma was proved by Day at. al. [5, 1].

Lemma 5.8 Let S′ ⊆ S be a subset of the reduction strings, which contains the all zero string.
The structure of the best parsimony tree for S′ is canonical.

Theorem 5.9 For every ε > 0 there is an n0 such that for all n ≥ n0, if S ⊆ {0, 1}n is a set
of m + 1 reduction strings corresponding to a degree 3 graph with n nodes and m edges, then the
following holds: Let TML denote an ML tree for S, and let p∗

ML and be an optimal edges length
for this ML tree. Then there is a canonical tree for S, TCA, with optimal edges length p∗

CA, such
that

log Pr(S|TML,p∗
ML)

log Pr(S|TCA,p∗
Ca)

> (1 − ε) .

Proof. We start from any ML tree, TML, and show how to transform it to a canonical tree, TCA,
with “close enough” log likelihood, in a sequence of up to n/ log log(n) steps. Each step involves
a small, local change to the current tree. We identify a forest (disjoint subtrees with a common
root), whose number of leaves is in the interval [log log(n), 2 log log(n)]. By Lemma 5.4, if the
root of the whole tree has a subtree with more than log log(n) leaves, we can find such a forest.
In such case, we first prune this forest, and then regraft it under the tree’s root. Let SF be the
restriction of the set S to the labeling of F ’s leaves. By Theorem 5.7, the parsimony score of SF

on F , with the 0n label at the root, is larger by at most B
�
= 84 than the parsimony score of of

SF on F with any s ∈ {0, 1}n label at its root. We will show how this implies that for every s,
the likelihood Pr(SF , �h = s|F,p∗

s) is not much larger than Pr(SF , �h = 0n|F,p∗
s). To prove this,

we use the results of Tuffley and Steel (corollary 3), the properties of our strings, and the small
size of the forest.

Let s∗, F ∗ be a string and a forest structure, respectively, for which Pr(SF , �h = s|F,p∗
s) is

maximized. By lemma 4.6, such an s∗ that has 1s only in positions where some s ∈ SF has a 1
exists.

Clearly, instead of bounding the likelihood difference for every s ∈ {0, 1}n, it suffices to bound
Pr(SF , �h = s∗|F ∗,p∗

s) − Pr(SF , �h = 0n|F,p∗
s).
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The parsimony score of SF ∪ {0n} on F , pars(SF ∪ {0n}, F ), is no larger than the number
of “1” entries in SF ∪ {0n}. There are at most two ”1”s per string, and the number of non-zero
strings is at most 2 log log n. Therefore pars(SF ∪ {0n}, F ) ≤ 4 log log n. Since s∗ can have a “1”
only in positions where some s ∈ SF has a “1”, the total number of “1”s in SF ∪ {s∗} is at most
twice the number in SF ∪ {0n}. Therefore, pars(SF ∪ {s∗}, F ∗) ≤ 8 log log n.

Let us denote by ks∗ the number of constant sites with s∗ at the root of F ∗, and by k0 the
number of constant sites with 0n at the root of F , by pars∗ the parsimony score of F ∗ with s∗

at the root, and by par0 the parsimony score of F with 0n at the root. Then we shaw that
par0 − pars∗ ≤ B, and know that ks∗ , k0 are both n − O(log log n), implying log(k0) − log(ks∗) =
θ(1). Finally, by Theorem 4.7, the order of magnitude of both Cu

SF∪{0n},F and Cd
SF∪{s∗},F ∗ is

O(kncm + pars · log pars), where knc = O(log log n) is the number of non-constant sites in the
set of strings, m ≤ 2 log log n is the number of strings, and pars = O(log log n) is the parsimony
value. All by all, in our case Cu

SF∪{0n},F − Cd
SF∪{s∗},F ∗ are both O((log log n)2), and so is their

difference. These inequalities imply

log (Pr(SF , �h = s∗|F ∗,p∗
s∗)) − log (Pr(SF , �h = 0n|F,p∗

0))

≤ − log(ks∗) · pars∗ − Cu
SF∪{s∗},F ∗ −

(
− log(k0) · par0 − Cd

SF∪{0n},F
)

= log(k0) · (par0 − pars∗) + (log(k0) − log(ks∗)) · pars∗ +
(
Cu

SF∪{0n},F − Cd
SF∪{s∗},F ∗

)

≤ B log(k0) + θ(pars∗) +
(
Cu

SF∪{0n},F − Cd
SF∪{s∗},F ∗

)

≤ B log(k0) + O(log log(n)) + O((log log n)2)
≤ B log(n) + o(log n)

To summarize, for each s ∈ {0, 1}n we get

log (Pr(SF , �h = s|F,p∗
s)) − log (Pr(SF , �h = 0n|F,p∗

0)) ≤ B log(n) + o(log n) .

Let Tarranged,p∗
arranged denote the tree resulting from uprooting and regrafting the forest F ,

and its optimal edge length. The conditions of Theorem 4.4 apply, so we conclude

log Pr(S|T,p∗) − log Pr(S|Tarranged,p∗
arranged) ≤ B log(n) + o(log n) ,

Namely each single uprooting decreases the overall log likelihood of S by no more than B log(n)+
o(log n). All uprootings therefore decrease the log likelihood by at most Bn log(n)/ log log n +
o(n log n/ log log n).

After a sequence of up to n/ log log n such uprootings, we get a tree having no subtrees with
log log n or more leaves. To get the desired canonical tree, we separately “canonize” each small
subtree, namely rearange it in an optimal canonical form. According to Lemma 5.8, we can
rearrange such a forest in a canonical form, with the all zero root, such that its parsimony score
does not deteriorate. Let Fc denote such canonical rearrangement, and let p∗

c denote the optimal
edges’ length for the rearrangement, and kc the number of constant sites in the strings set. By
corollary 3,

log Pr(S, �h = 0n|F,p∗
0) − log Pr(S, �h = 0n|Fc,p∗

c)

≤ − log(kc) · pars(S ∪ 0n, F ) − Cu
S∪{0n},F −

(
− log(kc) · pars(S ∪ 0n, Fc) − Cd

S∪{0n},Fc

)

= log(kc) (pars(S ∪ 0n, Fc) − pars(S ∪ 0n, F )) +
(
Cd

S∪{0n},Fc
− Cu

S∪{0n},F
)
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≤ Cd
S∪{0n},Fc

− Cu
S∪{0n},F

= O((log log n)2)

Therefore, each such rearrangement can decrease the log likelihood of S given T by at most
O((log log n)2). The minimal size of a forest that needs rearrangement is 2, so here are no more
than n/2 forests to be rearranged. Overall, the decrease in log likelihood due to the rearrangements
is O(n(log log n)2). Taking into both uprootings and rearrangements, the total log likelihood loss
of the process is Bn log(n)/ log log n + o(n log n/ log log n) + O(n(log log n)2) = o(n log n).

According to Theorem 4.10, the log-likelihood of all canonical trees is larger than −n log(n).
We just showed the existence of a canonical tree whose log likelihood differs from the log likelihood
of any ML tree by less than Bn log(n)/ log log(n) + o(n log(n)/ log log(n)). Thus there must be
a constant K > 0 such that the log-likelihood of any ML tree is at most −K · n log(n), and
consequently there is a canonical tree such that the ratio between the log likelihood of the ML
tree and this tree is

−K · n log(n)
−K · n log(n) − O(n · log n/ log log(n))

= 1 + O(
1

log log n
)

implying that for every varepsilon > 0 there is an n0 such that for all n > n0

L(S|TML)/L(S|TCA) < 1 + ε.
We remark that the size of the subforests could be chosen to be different than θ(log log n) and

still get similar result, provided they are neither too small nor too large.

5.3 Validity of the Reduction

In this section we complete the proof, by showing that indeed we have a reduction from GAP−V C3

to ML. We show that if G has a small enough cover, then the likelihood of the corresponding
canonical tree is high (this is the easy direction), and if the likelihood is high, then there is a
small cover (this is the harder direction). The translation of sizes, from covers to log likelihood,
and vice versa, is not sharp, but introduces some slack. This is why a gap version of vertex cover,
instead of exact vertex cover, is required as our starting point.

The next Lemma establishes a connection between MP and V C, and was used in the NP-
hardness proof of MP.

Lemma 5.10 [5, 1] G = (V,E) has a vertex cover of size c if and only if there is a canonical
tree with parsimony score c + m, where c is the degree of the root.

Theorem 5.11 For every 0 < ε there is an n0 such that for every n ≥ n0, if G is a degree 3
graph on n nodes and m edges, with a cover of size at most c, then there is a tree T such that the
log - likelihood of S satisfies

log(Pr(S|T,p∗(S, T ))) > −(1 + ε)(m + c) log n.

On the other hand, if the size of every cover is ≥ c, then the log likelihood of S given T satisfies

log(Pr(S|T,p∗(S, T ))) < −(1 − ε)(m + c) log n.

Proof. Suppose G has a vertex cover of size ≤ c. Since G’s is of bounded degree 3, c satisfies
m/3 ≤ c ≤ m, and n ≤ m ≤ 1.5n. According to Lemma 5.10, there is a canonical tree,
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TCA, with parsimony score c + m, such that the degree of its root is c. According to Theorem
4.10, the log likelihood of S, given this tree is, −(c + m) log(n) + θ(n). Since m, c = θ(n),
log(Pr(S|TCA,p∗(S, TCA))) = −(c + m) log(n) + θ(n) implies that for every ε > 0 and large
enough n,

log(Pr(S|TCA,p∗(S, TCA))) > −(m + c) log(n)(1 + ε) .

For the other direction, suppose the size of every cover of G is greater or equal to c. According
to Lemma 5.10, the parsimony score of each canonical tree is at least m+c. Thus by Theorem 4.10,
the likelihood of S, given any tree, is at most −(m + c) log(n) + cCu (where Cu is the constant
from the Theorem). Since m, c = θ(n) we get that for every ε1 > 0 and large enough n,

−(m + c) log(n) + cCu < −(m + c) log(n)(1 − ε1) .

According to Theorem 5.9, this implies that the likelihood of S with respect to any ML tree
satisfies

log(Pr(S|TML,p∗(S, TML))) < −(m + c) log(n)(1 − ε1)(1 − ε2) ,

where ε1, ε2 are arbitrarily small, and n is large enough. Thus, for every ε there is n0 such that
for n > n0 the likelihood of the best trees satisfies

log(Pr(S|TML,p∗(S, TML))) < −(m + c) log(n)(1 − ε) .

Theorem 5.12 ML reconstruction on trees is NP-hard.

Proof. Let G = (V,E) be an instance of gap − V C3. Denote |V | = n, |E| = m, c1 = 144
284 · n and

c2 = 145
284 ·n. Recall that in the reduction, we construct an instance < S,L > of ML such that S is

a set of m+1 strings, each string is of length k = n, and the threshold is L = −(m+ c1+c2
2 ) · log n.

Suppose G ∈ gap − V C3. Then G has a cover of size ≤ c1. According to Theorem 5.11, for
every ε > 0 and large enough n, log(Pr(S|TML,p∗(S, TML))) > −(m + c1) log(n)(1 + ε). In order
to show that < S,L >∈ ML, it suffices to show the existence of ε > 0 so that (m + c1)(1 + ε) <
m + (c1 + c2)/2. Since c1 < n and m ≤ 1.5n, and (c2 − c1)/2 = n/568, simple arithmetic shows
that by taking ε = 1/1420, the inequality is satisfied.

Suppose G /∈ gap−V C3. Then every cover of G is of size ≥ c2. According to Theorem 5.11, for
every ε > 0 and large enough n, log(Pr(S|TML,p∗(S, TML))) < −(m + c2) log(n)(1− ε). In order
to show that < S,L >/∈ ML, it suffices to show the existence of ε > 0 so that (m + c2)(1 − ε) >
m + (c1 + c2)/2. Since c2 < n and m ≤ 1.5n, and (c2 − c1)/2 = n/568, simple arithmetic shows
that by taking ε = 1/1420 again, the inequality is satisfied.

5.4 Other Substitution Models

Our NP hardness result was stated in Neyman’s two states model of substitution. What about 4
states DNA, or proteins? It turns out that such extension is not hard. In this section we prove
NP-hardness of maximum likelihood reconstruction under the Jukes-Cantor model [15]. This
model is a special case of Kimura 2 parameter and 3 parameter models, and of more elaborate
models of DNA substitution. The same holds for protein sequences as well.

Suppose we have a c state alphabet, Σ (for DNA sequences, c = 4). Let αe denote a sub-
stitution parameter associated with the edge e. In the JC model, there is a certain probability
1 − pe that a character does not change across the edge e. If it does change, the probabilities of
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changing to any one of the other c− 1 characters are equal, pe/(c− 1). The likelihood of S given
a tree under this model is defined in a way similar to equation 2:

L(S|T,p) =
∑

λn∈Σk×r

∏
e∈E(T )

pe

c − 1
de(λn)

(1 − pe(λn))k−de(λn) (3)

According to [22], we get for this model relations that are similar to the theorems, lemmata
and corollaries in section 4 (with Cu

T,pars(S,T ) and Cd
T,pars(S,T ) that are different but have the same

order of magnitude). Thus our reduction holds for the JC model, and consequently for all models
extending the JC model.

6 Concluding Remarks and Further Research

In this work, we proved that ML reconstruction of phylogenetic trees is computationally in-
tractable. We used the simplest model of substitution – the Neyman two states model [18]. This
NP-hardness proof generalizes to the Jukes-Cantor model [15], and then to the Kimura and other
models of DNA and protein substitution.

After the extended abstract of this work was submitted and published in RECOMB05, the
results in this paper were extended in three directions: We showed that ML remain hard even
under the assumption of molecular clock. We proved an initial 1 + ε hardness result of approx-
imation for log likelihood (for a rather small ε). We developed an approximation algorithm for
log likelihood for special, biologically interesting, sets of inputs. These results were presented in
ISMB 2005.

Vertex cover, which is the starting point for our reduction, has a simple 2-approximation
algorithm. Maximum parsimony has 2-approximation (and better) algorithms. What about any
constant approximation algorithms for log likelihood? So far, no constant factor approximations
are known. It will be interesting to find a b approximation of log likelihood for some constant
b > 1 + ε (for the above ε), or to prove that no such efficient algorithm exists (unless P = NP ).
Finally, it would be nice to identify regions where ML is tractable. In this context, we note that it
is not even known what is the complexity of small ML, where the sequences and the unweighted
tree are given, and the goal is to find optimal edge lengths. In practice, local search techniques
such as EM or hill climbing seem to perform well, but no proof of performance is known, and
multiple maxima [20, 3] shed doubts even on the (worst case) correctness of this approach.
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