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Abstract

We prove results indicating that it is hard to compute

efficiently good approximate solutions to the Graph

Coloring, Set Covering and other related minimization

problems. Specifically, there is an c >0 such that Graph

Coloring cannot be approximated with ratio n’ unless

P=NP. Set Covering cannot be approximated with ra-

tio clog n for any c < 1/4 unless NP is contained in
DTIME[nPOIY log ~ ]. Similar results follow for related

problems such as Clique Cover, Fractional Chromatic

Number, Dominating Set and others.

1 Introduction

Graph Coloring and Set Covering are two important

minimization problems that have been extensively stud-

ied over the last 25 years. They are both conceptually

simple and have served as paradigms for problems from

many application areas. In the Graph Coloring problem

we are given a graph G and wish to color its nodes with

as few colors as possible so that no two adj scent nodes

receive the same color. In the Set Covering problem we

are given a finite collection S = {S1, . . . . S~ } of subsets

of a finite set U, and we wish to compute a sub collection

that contains as few sets as possible and covers U.

Both problems were shown to be NP-hard in Karp’s

original paper [19]. Since it is unlikely that they can

be solved optimally in polynomial time, there has been

a lot of work in exploring the possibility of obtaining

efficiently near-optimal solutions. The usual metric for

measuring the nearness to optimality of a solution is by

the ratio of its cost to that of an optimal solution. The
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performance of an approximation algorithm is measured

then by its worst-case ratio over all inputs of a given

size. An algorithm achieves ratio r if for every instance

it computes a solution whose cost is at most r times the

cost of the optimal solution. (This is for minimization

problems; in the case of maximization problems, the

value of the computed solution must be at least I/r

times the optimal value.) The approximability status

of Graph Coloring and Set Covering have been long-

standing open problems.

A number of heuristics were developed for the Graph

Coloring problem already from the 60’s even before

the discovery of NP-completeness. Johnson analyzed

in 1974 the performance of many such heuristics in

[18] and proved that their worst-case ratio is very

poor, Q(n) where n is the number of nodes. He also

proposed another heuristic with slightly better per-

formance, @(n/ log n). This has been improved since

then, but still the currently best known ratio achiev-

able by a polynomial-time approximation algorithm is

only O(n(log log n)2 /(log n)3) [16], a ratio that is worse

than n’ for any c < 1. Somewhat better ratios have

been obtained in the special case of graphs that can

be colored with a small number of colors (for example,

for 3-colorable graphs) [6], [28]. On the negative side,

the best known result is still that of Garey and Johnson

from 1976 showing that if a polynomial-time approxima-

tion algorithm achieves a constant ratio smaller than 2

then P=NP [14].

In the case of the Set Covering problem, Johnson and

LOV6SZ proved in the mid 70’s that a simple greedy

heuristic achieves a ratio of ln(lV) + 1 w 0.710g21V,

where IV = IU I is the number of different elements [17],

[21]. This result has served as an important paradigm

in many contexts and has been extended several times.

Chviital generalized it to the weighted case, in which

each set of the given collection has an associated weight

and we wish to find a cover with the minimum total

weight [8]. The above logarithmic factor bounds the ra-

tio of the cost of the solution obtained by the greedy
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heuristic not only to the cost of the optimal solution,

but also to the cost of the best fractional cover, i.e.,

the best solution to the Linear Programming relaxation

of a standard formulation of the Set Covering problem

as an Integer Program. The result was further general-

ized in different directions, for example, to the Integer

Programming problem of minimization type with non-

negative coefficients [10], to the case of submodular con-

straints [29], and to a continuous version [13]. On the

negative side, essentially nothing was known until very

recently. The problem was shown MAX SNP-hard in

[26]. The results of [2] imply then that it does not have

a polynomial time approximation scheme unless P=NP;

i.e., there exists a constant e > 0 such that the problem

can not be approximated in polynomial time with ratio

smaller than 1 + e unless P=NP.

In this paper we show strong negative results on the

approximability of both these problems. For the Graph

Coloring problem we show that there is a constant & >0

such that no polynomial time approximation algorithm

can achieve ratio ne unless P=NP. Similar results follow

for other related minimization problems. The Graph

Coloring problem can be stated as the problem of cov-

ering the nodes of a graph by the minimum number of

independent sets. Other graph covering problems of this

type that are known to be (almost) equivalent to col-

oring wit h respect to approximabilit y include: covering

the nodes of a graph by the minimum number of cliques,

covering the edges of a graph by cliques, and covering

the edges of a bipartite graph by complete bipartite sub-

graphs [30], [24], [27]. Also a similar negative result

holds for the approximation of the jracttonal coloring

problem (we give the definition in the next section).

For the Set Covering problem we show that it cannot

be approximated within ratio clogz N for any constant

c < 1/4 unless NP is contained in DTIME[nPOIY log”].

Of course the same result follows for the generalizations

of Set Covering mentioned above. Furthermore, simi-

lar results follow again for closely related minimization

problems: Hypergraph Transversal (node cover), mini-

mum Hitting Set, minimum Dominating Set in a graph,

and the variant of the Set Covering problem where we

wish to minimize the sum of the cardinalities of the sets

in the cover.

Our proofs use the recent results from interactive

proof systems and probabilistically checkable proofs and

their surprising connection to approximation. This con-

nection was first observed by Feige et al. [11]. They

used it to prove a negative result on the approximation

of the maximum clique and the maximum independent

set problems, which was then tightened in [3] and [2] to

show that these problems cannot be approximated with

ratio n’ for some constant e > 0 unless P=NP. Arora et

al. [2] developed new interactive proof systems for NP

which allowed them to prove that unless P=NP, Ma,xi-

mum 3-Satisfiability and a host of other problems that

are hard for the class MAX SNP do not have a poly-

nomial time approximation scheme. MAX SNP is a

class of maximization problems defined syntactically in

[26]; minimization problems can be “placecl” in the class

or shown hard for it indirectly through approximation-

preserving reductions from their complementary maxi-

mization problems.

Other connections between interactive proof systems

and approximability were observed in [9, 112, 5].

The interactive proof techniques can be most nat-

urally applied to maximization problems. Interactive

proof systems themselves can be viewed iis maximiza-

tion problems in which the goal is to find strategies for

the provers that maximize the probability that the ver-

ifier accepts its input. To prove intractability for the

approximation of minimization problems we must relate

them to appropriate maximization problems.

We prove the nonapproximability of Graph Colw-

ing by a reduction from the maximum Independent Set

problem. It has been known for a long time (see [17])

that one can use an algorithm for the Independent Set

problem with approximation ratio r to obtain an algo-

rithm for Graph Coloring with ratio r log n; our reduc-

tion shows a relationship between the twct problems in

the reverse direction. The proof draws in spirit from the

recent techniques in that the construction has a (lin-

ear) algebraic flavor instead of the more usual graph-

theoretic one. Our proof for the Set Covering problem

is completely different. It uses a reduction from two-

prover one-round interactive proof systems [22, 12].

In the rest of this abstract we sketch the construc-

tions. In Section 2 we address the Graph Coloring prcJb-

lem and in Section 3 the Set Covering probllem. Because

of space limitations, most of the proofs are omitted from

this extended abstract.

2 The Difficulty of Coloring

We shall give first preliminary definitions and notation.

Then we shall describe in Section 2.1 the construction

proving the main result stated in the Introduction on

the nonapproximability of coloring. In Section 2.2 we

prove a result for the case of graphs with bounded chro-

matic number: if there is a constant c such that for ev-

ery k there is a polynomial time algorithm (possibly de-

pending on k) that colors every k-colorable graph with

c. k colors then P=NP. Finally, in Section 2!.3 we discuss

some other minimization problems related to Coloring.

For a graph G, we use n(G) to denote its number

of nodes, a(G) to denote the size of its largest indepen-

dent (stable) set, and x(G) to denote its chromatic num-
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her. Our reduction is from the maximum independent

set problem. Arora et al [2] showed that it is NP-hard

to approximate the maximum independent set problem

within a factor nc for some c > 0. It will be convenient

to take advantage of the structure of the graphs that

are produced in their reduction (which is the same as

the reduction of Feige et al [11]). From a Boolean 3CNF

formula p with m variables, they construct a graph GP

on n = me(l) nodes which are partitioned into r cliques

Cl, ..., C’, with the following properties:

1. If p is satisfiable, then a(GW) = r, i.e., Gw has

an independent set that contains exactly one node

from each clique C’i (obviously an independent set

cannot contain more than one node from a clique);

2. if p is not satisfiable, then cr(GP) < r/g where the

“gap” g is n’ for some 6>0.

We explain briefly the relationship to the probabilis-

tically checkable proof for 3SAT: r is the number of

random choices of the verifier; there is one clique G;

for each random choice, which contains one node for

each possible combination of answers from the provers

that causes the verifier to accept. (The graph cent ains

more edges connecting nodes from different cliques if

they correspond to contradictory answers to a common

question.) Thus, for a probabilistically checkable proof

with 1 random bits and q query bits, r = 21 and the

size of each Ci is bounded by 29. We refer the reader to

the references for more information on probabilistically

checkable proofs; they are not needed to understand the

rest of this section.

The basic idea of our reduction is as follows. Let G

be a partitioned graph as above. We shall construct

another graph H such that

(i)

(ii)

a(H) is proportional to cx(G), and

if a(G) = r, the chromatic number of H is x(H) =

n(H)/a(H); specifically, we can transform any in-

dependent set I of G with r nodes to a maximum

independent set 11 of H such that we can color the

nodes of H by appropriate “shifts” of I’.

It will follow that a gap can be transferred from the

independent set problem in G to the chromatic number

problem in H.

2.1 The Construction

Let G be a graph whose nodes are partitioned into

cliques Cl, . . . . Cr. Let p be a prime that is at least

as large as the size of the largest Ci. We will work in

the field 2P of integers modulo p. We number arbitrar-

ily the nodes of each Ci by distinct elements of 2P, for

example by the numbers 1, . . . . lCi 1. Each node v of G

can be represented by a pair < i, k >, where the first

component i = 1, . . . . r gives the index of the clique con-

taining the node v, and the second component k E ZP

gives the number of the node in the clique Ci.

Each node of the new graph H will be represented

by a 4-tuple < i, k, y, w > where the first component

i=l ,. ... r, the second component k is in 2P and the

other two components y, w are in Z;. There is one node

for every possible such 4-tuple. Thus, H has exactly rp5

nodes.

Before specifying the edges of H, itwill be helpful to

describe how an independent set I of G is transformed to

an independent set I’ of H so that the above mentioned

property (ii) holds. Let v =< i, ki > be a node of I

from the ith clique Ci. Corresponding to this node v,

the independent set I’ of H contains a set of p2 nodes

< i, ki, y, kiy >, one for every possible third component

y = Z:; that is, the first two components agree with v
and the fourth component is equal to the product of the

second and the third. A shift of I’ is obtained by adding

to the second component of each node of I’ the same

amount s E 2P and adding to the fourth component the

same vector z E Z;. The edges of H are specified so

that every shift of It is also an independent set.

More specifically, let uA =< iA, kA, yA, WA >, UB =<

iBj kB, yB, wB > be two nodes of H. The two nodes are

not adj scent iff there is an element s E 2P and a vector

z E Z: (the “shifts”) such that

● both <iAjkA—s> and< iB, kB—s> are nodes

of G and they are not adj scent,

● wA = (kA – s)y/1 + .2 and wB = (kB – s)yB + Z.

Note in particular that if two nonadjacent nodes of

H have the same first component i = iA = iB, then

they must also have equal second components kA = kB,

because of the first condition and the fact that Ci is a

clique in G. Furthermore, they cannot also have equal

third components yA = yB because then by the second

condition they should also agree on the fourth compo-

nents wA = wB, i.e., they must be the same node. The

following lemma shows the basic properties of the con-

struction.

Lemma 2.1

1. p2a(G) ~ cx(H) < max(p2a(G), p2(a(G) – 1) + r,

pr).

2. If cr(G) = r then a(H) = pzr and the chromatic

number of H is x(H) = n(H)/cr(H) = p3.
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Proofi Omitted in this extended abstract. I

Corollary 2.2 If we pick p > ~, d (for example if

p ~ r) then

1. a(n) = p2a(G), and

2. if a(G) = r then x(H) = n(H)/a(H) = p3.

WJe are ready to prove the main theorem now.

Theorem 2.3 There is a 6>0 such that at M NP-hard

to approximate the chromatic number problem within a

factor nb.

Proofi By [2] there is a c >0 such that given a 3CNF

formula p we can construct in polynomial time a graph

G partitioned into r cliques Ci such that,

1. if p is satisfiable then a(G) = r, and

2. if p is not satisfiable then a(G) < r/[n(G)]’.

Apply the above transformation, and assume that we

choose p as in the above corollary. Let H be the result-

ing graph. If p is satisfiable then jy(~) = p3. If p is not

satisfiable then x(H) ~ n(H)/a(H) = ~P5/P2CI(G’) >

p3 [n(G)]’. The ratio between the two cases is at least

[n(G)]’ ~ [n(H)]& for some constant 6>0. The precise

value of 6 (and the best choice for p) depends on the

relationship between r, n(G) and e; that is, ultimately

it depends on the relationship between the number of

random bits, the number of query bits and the error

probability that come out of the proof of [2]. I

Comments. The above transformation utilizes the

structure of the graphs that are constructed in the re-

cent reductions of [2] and the other papers for the non-

approximability of the independent set problem. How-

ever, every graph can be brought in that form. Let G

be an arbitrary graph. Form its product G’ = K, x G

with the complete graph on r ~ a(G) nodes as follows.

Every node of G’ is a pair < i,v > where i = 1, . ..)r is

a node of K, and v is a node of G. The nodes with the

same first component i induce a clique G’i. Two nodes

< i, v >, < j, w > from different cliques are adjacent

iff their second components v, w are equal or adjacent

nodes of G. It is easy to see that a(G’) = a(G).

Apply now our transformation (denote it TP ) on G’

to obtain a graph H = Tp (K, x G). Assume that p ~

r ~ a(G). If r is an integer multiple of a(G), then it

is easy to see by Corollary 2.2 that x(n) is inversely

proportional to a(G), namely, x(H) = n(H)/cr(H) =

p3r/a(G). If r is not an integer multiple of a(G), then

the chromatic number of H = TP (Ifr x G) lies between

p3r/cx(G) and p3 [r/a(G)].

2.2 Bounded chromatic number

The gap of na of Theorem 2.3 holds only for graphs with

unbounded chromatic number. We can deduce from

the reduction also some constant gaps for graphs with

bounded chromatic number, where the gap increases

(going to infinity) as the chromatic number increases

(going to infinity).

If G is a graph whose nodes are partitioned into

cliques Cl, . . . ~C,, we call r the hezght of the graph

and call max /C~[ the width of the graph. If L1, L2

are two disjoint languages we say that an algorithm a!is-

tinguishes between L1 and L2 if on input x, it outputs

“Yes” if ~ c L1 and it outputs “No” if c e L2; the

output is irrelevant if z is neither in L1 ncm in L2. ‘The

results of [2] imply the following lemma.

Lemma 2.4 For every constant g > 1 (the “gap’>),

there is a constant w such that the following problem

is NP-hard. Gwen a partitioned graph G with width at

most w, dtsttnguish between the case that a(G) is equal

to the height r of G and the case that a(G) < r/g.

Theorem 2.5 For every constant g > 1, there is a

constant c such that the fol!owmg problem is NP-hard.

Given a graph H, distinguish between the case that H is

colorable wtth c colors and the case that the chromatic

number of H is at least g c.

Proofi Let g’ = g + 1 be a constant gap for the in-

dependent set problem and let w be the implied widlth

for g’ from the preceding lemma. Let p be the small-

est prime that is at least as large as g’ and w, and let

c = p3. Clearly, p is a constant that depends on g, and

the same is true of c.

Let G be a partitioned graph with width w and height

r. Let H = TP(G). By Lemma 2.1 if a(G) = r then

x(H) = p3 = c. Suppose that a(G) < r/g’. We can

easily bound the three quantities on the right-hand side

of the inequality of the first part of Lemma 2.1. The

first and the second quantity are smaller than P2CZ(G)+
r < p2(r/g’) + r < p2r/g. The third quantity is pr <

p2r/g. Thus, cr(H) < p2r/g, and consequently x(H) z

n(H)/a(H) > gp3 = g C. I

Stronger results are probably true in the case of

bounded chromatic number. For instance, it should be

possible at least to reverse the order of the two quanti-

fiers in the theorem, i.e., to show that there is a constant

number of colors c such that, even for c-colorable graphs

one cannot achieve a constant factor approximation in

polynomial time unless P=NP.
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2.3 Related problems

We define some problems that have similar approxima-

bility properties to Graph Coloring.

Clique Partition: Given a graph G partition its

nodes into the minimum number of cliques; equiva-

lently, cover the nodes of G with the minimum number

of cliques.

Clique Cover: Given a graph G, find the minimum

number of cliques that cover the edges of G. This prob-

lem was studied and shown NP-hard in [30] and [24]. It

is equivalent to the problem of finding a set U of min-

imum cardinality such that G can be expressed as the

intersection graph of a collection of subsets of U.
Biclique Cover: Given a bipartite graph G, find the

minimum number of complete bipartite subgraphs that
cover the edges of G. This problem was shown NP-

hard in [24]. It is related to communication complexity.

In particular, the nondeterministic communication com-

plexity of a predicate is equal to the logarithm of the

biclique cover number of a bipartite graph associated

with the predicate.

Fractional Chromatic Number: Given a graph G,
find a collection of independent sets II, . . . It of G and

corresponding nonnegative (possibly fractional) values

Al, . . . At, so that the sum of the A‘s is minimized, and

for every node v of G the sum of values assigned to

the independent sets containing v is at least 1. It is

well known that we only need to assign nonzero value

to at most n independent sets, i.e. there is an opti-

mal solution with t ~ n. If we consider the Graph

Coloring problem as a special case of the Set Covering

problem where the collection of sets is the collection of

all independent sets of the graph (it is not listed ex-

plicitly), then the fractional chromatic number is the

optimal value of the corresponding Linear Programming

relaxation. The fractional chromatic number is within a

log n factor of the (ordinary integer) chromatic number.

Grotschel, L&asz and Scrijver used the Ellipsoid algo-

rithm in an interesting way to show that it is NP-hard

to compute a weighted version of the fractional chro-

matic number [15]. The NP-hardness of the unweighed

version appears to be new.

Theorem 2.6 The following holds for each of the prob-

lems Clique Partition, Clique Cover, Biclique Cover and

Fractional Chromatic Number. There is a 6 > 0 such

that there does not ezist a polynomial time approxima-

tion algorithm that achieves ratio nb unless P=NP.

3 The Difficulty of Set Coverkg

A set system S = (U; S1, S2, . . . . Sm ) is a collection of

sets S1, S2, . . ..Sm c U. We say that S1, S2, . . ..Sm

cover U if and only if UT= I Si = U.

In this section we will study the set covering prob-

lem: Given a collection of sets S1, S2, . . . . S~ c U =

{1,2,..., IV} find the minimum sub collection that cov-

ers {1, 2, . . . . IV}. We will show that this problem is

hard to approximate within a factor of c log N, for any

O < c < 1/4. We will then list some equivalent prob-

lems.

3.1 The Construction

Our construction uses a 2-prover l-round interactive

proof system constructed by Feige-Lov&sz [12] and

Lapidot-Shamir [22]. Our construction depends on some

specific properties of their proof system and we need to

change the proof system slightly.

A 2-prover l-round interactive proof system for a lan-

guage L consists of three players: a probabilistic (com-

putationally limited) verifier V and two deterministic

(all-powerful) provers PI and P2. Fix an input size

n. The proof system has an associated finite set Qi,

i = 1,2 of possible queries that the verifier can ask the

ith prover, a finite set Ai of possible answers that it can

receive from the ith prover, a finite set R of possible

random seeds for the verifier, a polynomial-time com-

putable function f from Zn x R to Q1 x Q2 (where X is

the input alphabet) and a polynomial-time computable

Boolean predicate 11 on X“ x R x Al x AZ. A prover Pi

for i = 1,2 is simply a function from Qi to At. Given

an input x of length n, the verifier chooses uniformly at

random a seed r from R and computes a pair of queries

(ql, ~z) = f (~, r) to the provers. After receiving answers
al = P1(ql) and az = P2 (q2) from the provers, the ver-

ifier evaluates the predicate II(z, r, al, az) and accepts

or rejects accordingly.

Feige and Loviisz [12] constructed 2-prover l-round

proof systems for any language in NEXP. Their con-

struction can easily be scaled down to a 2-prover 1-

round proof for SAT such that

● If p E SAT then there exists provers such that the

verifier accepts always.

● If p @ SAT then for any pair of provers the verifier

accepts with probability at most l/n, where n is

the size of p.

Furthermore, the verifier uses poly log n random bits

and all the messages have length poly log n; i.e., the

sets R, Qi and Ai, i = 1, 2, have cardinality bounded

by 2P01Ylog n. For a fixed prover Pi, the verifier’s queries

to that prover are distributed uniformly at random over

the set Qi of all the possible queries, and given a query

to one prover the number of queries that can be asked to

the second prover is independent of the query to the first
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prover. Furthermore, for a fixed choice of the random

seed and a fixed answer from the first prover there is at

most one answer from the second prover that makes the

verifier accept.

We will need that the verifier asks the provers the

same number of queries. The Feige-Lov6sz proof system

does not have this property, but a simple variation yields

a proof system that has this property as well as all the

other ones mentioned above.

Our construction uses as a basic building block a set

system f?m,l = (B; Cl, C2, . . . . Cm) with the properties

stated in the following lemma. Its proof is omitted.

Lemma 3.1 Given integers m, 1 there exists a set B

and C1, Cz, . ..j Cm c B such that for any sequence of

indices 1 < il < i2 < . . . < il < m, no collection

Dilj Di,, ..., Di, covers B where Di, is Ci, or the com-

plement of Ci,. Furthermore, jB] = O(221m2).

The basic idea of the construction is as follows. Let p

be a CNF formula. We shall construct an instance SW of

SETCOVER such that if p G SAT then there is a cover

of size IQ1 I + IQ21, whereas if p @ SAT the minimum

cover has size at least clogN(lQll + IQ21).

The points in Sv are all pairs < r, b >, where r is a

random seed to the verifier and b is a point in the set

B from the set system f?m,l, where m = [Az I and i is

an even integer that will be determined later. SW has a

set S~,~, for every pair of possible query qi and possible

answer ai to qi for each prover i = 1, 2.

For r E R and i = 1,2 let q[r, i] be the query that the

verifier asks the ith prover when using the random seed

r. Let a2 [r, al] be the answer from the second prover

such that the verifier accepts when using random seed

r and receiving al as the answer from the first prover.

Note that from the properties of the protocol there exist

at most one such answer. If no such answer exists then

let a2 [r, al] be undefined. Now we can define the sets,

for every qi E Qi and ai c Ai:

,,,~1 ={< r,b > Iql = q[r, 1],s

a2[r, al] is defined and b @ Ca,[r,al]}

and

~,,~, ={< r,b > Iqz = q[r,2] and b E C.,}.s

Note that for a fixed r the points {< r, b >}bEB can

be covered by any two sets Sg[., 11,., and sg[,)q,~,, where

the verifier accepts if using random seed r and receiving

the answers (al, a2). Furthermore any covering that

uses less than 1 sets to cover the points {< r, b > }b~B

contains two sets that correspond to answers that make

the verifier accept. This follows from the property of

l?~z. If a covering, that covers all the points, uses at

most 1 sets to cover the points {< r, b >}l,c B then the

covering contains answers to q[r, 1] and q[r, 2] that make

the verifier accept. We can show the following:

Lemma 3.2 Let SETCOVER(SP) be the size of the

minimum cover of S’v.

● l~p E SAT then SETCOVER(SP) = IQII + IQ21.

● Ifp @ SAT then SETCOVER(SP) ~ clog N(lQll+

IQ21), where ~ = IRIIBI and 0< c < 1/4.

Proofi Omitted in this extended abstract. I

Theorem 3.3 For any O < c < 1/4, the Set Cover-

ing problem can not be approximated wzthin factor of

c log IV in polynomial tame unless NTIME(nPO’Y ‘“gn) =

DTIME(?P”’J’ ‘“g”).

Comments. A randomized variation of our con-

struction shows that for any O < c < l/2, the Set

Covering problem can not be approximated within

factor of c log N in polynomial time unless NP c

~~T~J/fE(nP01Yh3~ ). This gives us a very good lower

bound, since the upper bound inn w 0.7 lo,g n [17, 21].

The construction has size max(lRl, IAII, lA21)0(1j and

hence nPOIY 10gn. In order to get a polynomial-time

reduction showing nonapproximability of Set Cover-

ing within a factor of @(log N) using our construc-

tion we need new probabilistic proof systems for NP

for which max(lRl, IA11, IA21) is polynomial in n, and

that these proof systems have similar properties as the

Feige-Lov&z proof systems. The two most important

of these properties are the constant number of provers

and the very low error probability. Recently a step in

this direction was taken by [4] where a 4-prover in-

teractive proof system is constructed with parameters

max(lRl, lAl\, . . . . IA41) = nO(lOglOgn), yielding an imp-

rovement to the above result. It implies that for any

O < c < 1/8, the Set Covering problem can not be app-

roximated within factor of c log N in polynomial time

unless NP C DTIME(nOtlOg 10g‘)). Their proof systenls

also imply that approximating the Set Covering prolb-

lem within any constant factor is NP-hard.

3.2 Related problems

We define some problems that are equivalent to Set Cov-

ering.

Hitting Set: Given a (finite) collection S of subsets

of a (finite) set U, find a minimum cardinality subset of

U that intersects every set in S.

Hypergraph Transversal: Given a hypergraph

H = (V, E), find a minimum cardinality /set of nodes
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S that covers all the edges of H, i.e., every edge con-

tainsat least onememberof S.

Dominating Set: Given a(directed or undirected)

graph G, find a minimum cardinality set S of nodes

that dominates all the nodes of the graph, where a node

dominates itself and all its adjacent nodes.

Minimum Exact Cover: Given a (finite) collection

S of subsets of U find a subcollection S’ that covers U

and which minimizes the sum of the cardinalities of the

sets in S’. (This variant was called Set Covering II in

[17].)

All the above problems can be approximated within

the same logarithmic factor as the Set Covering prob-

lem. Kolaitis and Thakur define syntactically a class

of problems that exhibit this logarithmic behavior and

which have the Set Covering problem as a complete rep-

resentative [20].

Theorem 3.4 The following holds for each of the prob-

lems Hitting Set, Hypergraph Transversal, Dominat-

ing Set, Minimum Exact Cover. Forany O<c<

1/4, there is no polynomial time approximation aigo-

rzthm with ratio c log n unless NTIME(nPOIY ‘“g n ) =

DTIME(nPOIY ‘“g’).
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