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O Imbalance will only occur on the path from the inserted node
to the root (only these nodes have had their subtrees altered -
local problem)

O Rebalancing should occur at the deepest unbalanced node
(local solution too)



Left-left =2 single rotation
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Left-Right fixing
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Lets look at this more carefully

» Before:




We need two rotations here...(double rotation)
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O We fix the first node x on the way up

where there Is a violation

O After the fix, X Is at the same height as
It was before, so no nodes further up
towards the root will need to be

updated.
0o Can implement using just

2 bits

per

node for rebalancing (the difference
between the heights of the children



AVL Tree Delete

O An AVL delete is similar to a regular binary
tree delete
= search for the node

= remove it
zero children: replace it with null
one child: replace it with the only child

two children: replace it with right-most node in the
left subtree



AVL Tree Delete

0o Complications arise from the fact that
deleting a node can unbalance a number
of its ancestors

= Insert only required you find the first
unbalanced node

= delete will require you to go all the way back
to the root looking for imbalances

Must balance any node with a +2 balance factor (+2
the left sub-tree is 2 levels deeper, -2 the right sub-tree is 2 levels
deeper)



AVL Tree Delete

delete(L)
(requires a
rotate left-right
of node G)

Notice that even after fixing J, M is still out of balance



AVL Tree Delete

O Traversing back to the root

®= how we need to return 2 values
one indicating the height of the sub-tree has changed
another to return the deleted value

m one of the values will need to be “returned”
through the parameters

will create a data TreeNode to place the returned
data into



Returning Two Values

O Here Is a simple example:

void main() {
TreeNode data = new TreeNode(null);
if(someMethod(data))
System.out.printin(data.key.toString()); // prints 5

}

boolean someMethod(TreeNode data) {
data.key = new Integer(5);
return true;



Return Values

O The delete method should return true if
the height of the subtree changes
= this allows the parent to update its balance
factor
O A TreeNode reference should be passed
Into the delete method

= If the key iIs found In the tree, the data Iin the
node should be copied into the TreeNode
element passed into delete



Delete Situations

O Node to delete is a leaf
= copy nodes data into the TreeNode data field

= make the nodes parent refer to null
remember to consider deleting the root

m return true
the height of the sub-tree went from 1 to zero

O Node to delete has only one child
= copy nodes data into the TreeNode data field
= make the nodes parent refer to its only child
remember to consider deleting the root
= return true
height of sub-tree has been decreased one level



Delete Situations

O Node to delete has two children
= copy nodes data into the TreeNode data field

= find the node to replace this one with
descendant farthest right in left sub-tree

= then make a copy of the replacement node
do not want to move the original

= insert the copied replacement in place of the
node to delete

= delete the original replacement node

to do this, call the delete method recursively
= do not just delete it



Deleting Replacement Node

0 So why make a copy of node to replace?

= remember, we need to keep all nodes between
the deleted node and the replacement node

balanced
= well, that's what the delete method does

= consider what happens when calling delete
with the replacement node
guaranteed replacement doesn’t have two children
= |t gets deleted and returns true
replacements parent will get back true and update its

balance factor
= it will then return (true or false) and eventually we will
get back to the node we deleted



Changing Height

0 So how do we know whether or not to
return true?

m If a recursive call returns false, number of
levels below unchanged

return false

= If it's a leaf or only has one child, lost a level
return true

= If a recursive call returns true and the balance
factor goes to zero, lost a level

was unbalanced, now it's not — this only happens if
one side or other loses a level to balance things

return true



Rotating Nodes

O Very similar theory to insert

= One major difference
If a node was inserted and another node had to be
balanced, the child to rotate with had a balance

factor of -1 or 1 — never zero
when deleting a node, it is possible for the child to
rotate with to be zero



Rotating Nodes

@ deIete(L)

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it's right sub-tree.

S’s balance factor is 1 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does change in this case.



Rotating Nodes

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.
S’s balance factor is 0 before rotate.

Just do a rotate left of node S.
Notice that the height of the tree does not change in this case.



Rotating Nodes

Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.



Rotating Nodes

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.



Deleting a Node

O boolean delete(Comparable key, TreeNode subRoot,
TreeNode prev, TreeNode data) {
1) if subRoot is null, tree empty or no data
return false
I1) compare subRoot’'s key, K., to the delete key, K,
A) if K. < K,, need to check the right sub-tree
-> call delete(key, subRoot.right, subRoot, data)
-> if it returns true, adjust balance factor (-1)
-> if it returns false, just return false
B) if K. > K,, need to check the left sub-tree
-> call delete(key, subRoot.left, subRoot, data)
-> if it returns true, adjust balance factor (+1)
-> if it returns false, just return false



Delete Continued

O Delete continued

c) if K. == K, this is the node to delete

-> if zero or 1 children, make parent “go around”
subRoot and return true

-> if two children, find replacement node, copy it,

Insert copy into subRoots place, and delete the
original replacement node

* if delete returns true, increase bal by 1
I11) If the code gets this far
A) if subRoot’s balance factor equals 2 or -2, balance the tree
B) if, after balancing tree, subRoot’s balance factor equals O
-=> return true
C) if, after balancing tree, subRoot’'s balance factor is not O
-> return false



X" Ar

a single restructure is O(1)
m using a linked-structure binary tree
find is O(log n)
= height of tree is O(log n), no restructures needed
Insert is O(log n)
= initial find is O(log n)
m Restructuring up the tree, maintaining heights is O(log n)
remove is O(log n)
» initial find is O(log n)
m Restructuring up the tree, maintaining heights is O(log n)
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0O AVL Trees on Wikipedia

O AVL Tree applet

O Nice Red-Black tree demo
O Another AVL/RB tree applet




The End



