Introduction Big Data Systems

Dr. Rubi Boim

Agenda for today

- 5 V's of Big Data
- Cloud computing
- Highly available / highly Scalable
- Managed vs Unmanaged services

Scalable d services

When data is Big Data?

5 V's of Big Data

- Volume
- Velocity
- Variety
- Veracity
- Value

Data is rapidly increasing (due to cloud computing, mobile and more)

Value	Metric	
1000	kВ	kilobyte
1000 ²	MB	megabyte
1000 ³	GB	gigabyte
1000 ⁴	ΤВ	terabyte
1000 ⁵	PB	petabyte
1000 ⁶	EB	exabyte
10007	ZB	zettabyte
1000 ⁸	YB	yottabyte

The speed at which data is generated

- Frequency of data generation (write) everything is measured
- Frequency of data processing (read) real time experience

- Structured data info, transactions...
- Semi structured data logs, sensor data...
- Unstructured data images, video, audio...

The truthfulness or reliability of the data

- <u>data quality</u> of captured data can vary greatly
 - bias
 - abnormalities
 - inconsistencies
 - duplication

lity of the data data can vary greatly

The final result.

- which questions were answered
- hidden insights (machine learning)
- collecting data without use is, well, useless

nswered ne learning) use is, well, useless

- Volume
- Velocity
- Variety
- Veracity
- Value

Cloud computing

Region / AZ / EL

- Region Cluster of data centers in a physical location
- Availability Zone
- Edge Location access to the network with limited services (usually CDN)

• (Names may vary between cloud providers)

a discrete data center with redundant power, networking, and connectivity in a Region

AWS regions (march 2020)

8

AWS edge locations (march 2020)

Cloud computing

 SaaS software as a service

• PaaS

platform as a service

 laaS infrastructure as a service

Highly Available / Highly Scalable

Mike orders a a basketball

•

- Create order
- Check inventory
- Process payment
- Approve order
- Send to warehouse

Once clicked "order"

fire / flood / electricity / hardware malfunction / software update...

Possible outcomes

- Service disruption
- Data loss
- Data consistency
- Money lost (direct / reputation)
- <u>A hared problem to solve for Databases</u> disaster recovery: RTO (Recovery time) / RPO (Recovery point object)

High availability

"Nines"

Availability	Downtime per day	Downtime per year
90%	2.40 hours	36.53 days
95%	1.20 hours	18.26 days
99%	14.40 minutes	3.65 days
99.9%	1.44 minutes	8.77 hours
99.99%	8.64 seconds	52.60 minutes
99.999%	864.00 milliseconds	5.26 minutes
99.9999%	86.40 milliseconds	31.56 seconds

Mike tweets about a basketball he bought

- - time

Reach millions of users

 Millions of users try to shop the same basketball at the same

> System error Too many requests

High scalability

- Scale up vs scale out
- Commodity computing
- Stateless
 - amazon's shopping cart is stateless?
- Microservices
- Sharding

Scaling up from two to three CPUs

Scaling out from two to three CPUs

Microservices

Ordering a basketball

23

Load balancer

Auto scaling

- load balancer
- When threshold drops, remove the from the load balancer and terminate the instance
- <u>Usually</u> requires stateless logic can Cassandra work with auto scale?

When threshold occurs (hits / traffic / CPU...), create a new instance with the same logic and add to the

Auto scaling - compute + storage?

- (databases)
- Stateless?
- What happens when we scale down?

Some applications use both compute and storage

Scaling databases

Scaling databases

Warning - we will talk about this a lot :)

Decoupling + event based services

autonomous and unaware of each other services

Pub sub

Managed vs Unmanaged Services

Unmanaged service

You are responsible for everything!

- Choosing CPUs, storage, network...
- Installing OS, Java, core software, dependencies...
- Patches, updates
- Security
- Backup
- Monitoring
- Availability

Unmanaged service (2)

Requires different skills

- System
- DevOps
- . . .

Managed service

- you out of the box
- Hardware utilization
- Focus on stuff that really matters for you
- Cost?

All the stuff we talked about before are managed for

Managed service cons

- Cloud locked in
- Slightly limited functionality
- Works only in the cloud
- Cost?

(cheaper to go unmanaged on large scale, but a lot of headaches)

In practice

 Some will be managed and some not VMs load balancers network stuff

a good question

To go managed or unmanaged with databases is

Managed vs Unmanaged <u>Databases</u>

Fully managed services on AWS Spend time innovating & building new apps, not managing infrastructure

Schema design Query construction Query optimization Automatic failover Backup & recovery Isolation & security Industry compliance Push-button scaling Automated patching Advanced monitoring Routine maintenance Built-in best practices

But how managed service work?

• It is just someone else's software...

scenes?

Do we need to understand how it works behind the

For databases, YES!

Big Data databases

- Managed big data databases are built on, well, big data databases
- Data modeling is crucial. (with bad modeling, nothing will work)

To model data correctly, we need to understand the technology (it is <u>not</u> just reading the API docs)