Relational Databases ntroduction **Big Data Systems**

Dr. Rubi Boim

Discussion

an e-commerce store

- Keep tracks of the users
- Keep tracks of the items
- Keep tracks of the purchases

How would you do it? Wix is not an option :)

Assume you are hired to develop a system that manage

Easily...

- Create a program that saves the data into text files
 - •/store/users.txt
 - •/store/items.txt
 - •/store/purchases.txt

- Update the files according to the application logic
 - If a new user register, add her to users.txt

• If user purchase an item, update purchases.txt with the basket

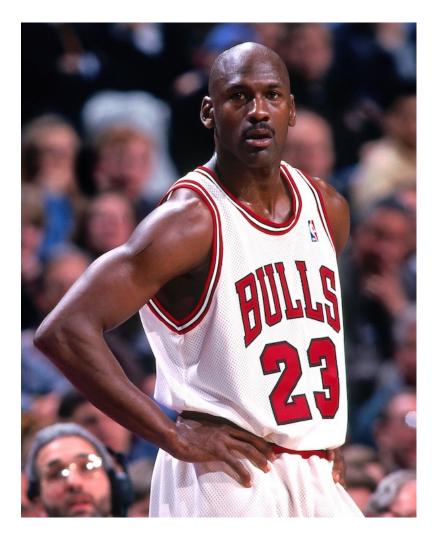
Stuff to consider

- What happens if a user updates her name? What happens if a user updates her credit card? What happen if we expend to different countries?

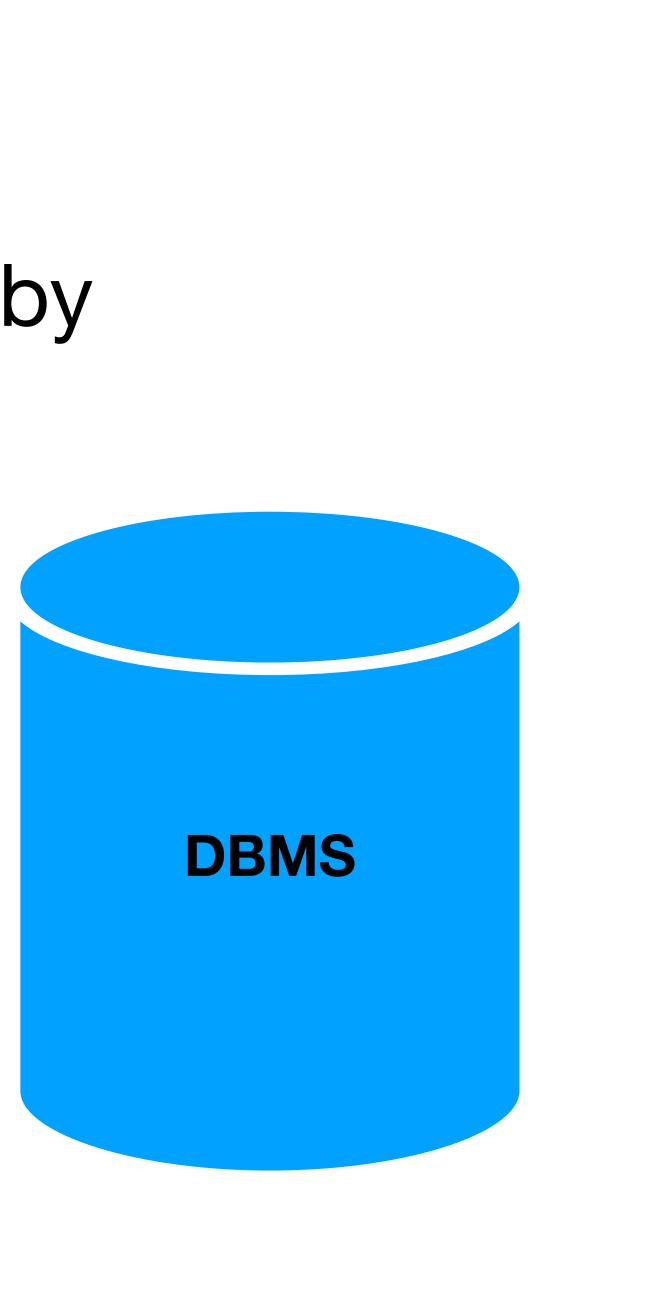
(more) Stuff to consider

- There is a need from the management to know:
 - What is the average order amount?
 - How many users bought items worth more than 1k\$?
 - Which are the most popular items (in the last week)?
 - Who are the users who haven't purchased anything in the last 3 months, but spent over 100\$ before?

. . .


(more more) Stuff to consider

- How to backup the data?
- How to handle concurrency?
- What happens if the system crash in the middle of a purchase operation(s)? (the credit card is charged but the data was not added to the purchases file)


DBMS database management system

A <u>software</u> that capture and analyze data by interactions with other applications

Modern DBMS supports

- Different data types
- User defined queries
- Transactions
- Query engine / optimization
- Storage management
- Access management

Database types

Databases are classified based on their data model

- Table (Relational)
- Key Value
- Graph

. . .

- Document
- Wide column

Spoiler alert - we will discuss Wide column extensively in the course

Relational DBMS

Note - when someone says "DB" they refer 99% of the times to RDBMS

Relational model

- Data is stored in tables of columns and rows
- A <u>unique key</u> identify each row a table without a primary key - anti pattern
- The table is <u>unordered</u> (no first / last)

Table / relation

	<u>user id</u>	name	city	brithdate
	101	Rubi Boim	Tel Aviv	<null></null>
	102	Tova Milo	Tel Aviv	<null></null>
	103	Lebron James	Los Angeles	30/12/1984
Rows / tuples	104	Michael Jordan	Chicago	17/02/1963

users

Columns / attributes

Data types (sample)

Only atomic types - no sets / lists / maps...

- Characters: char, varchar, text...
- Numbers:
- Time: date, datetime, timestamp ...

implementation

bit, int, bigint, float...

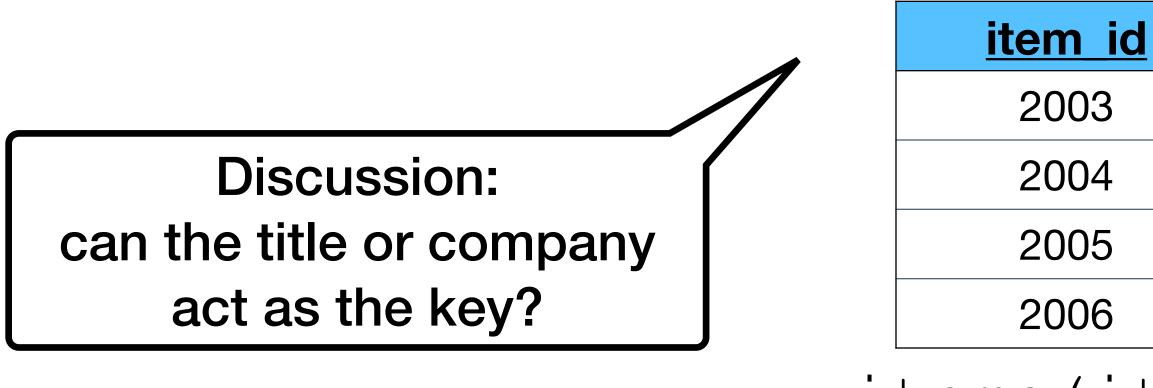

* Each DB (MySQL, SQLServer...) has a slightly different

Table schema

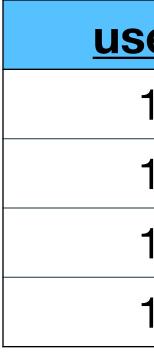
users

<u>user id</u>	name	city
101	Rubi Boim	Tel Aviv
102	Tova Milo	Tel Aviv
103	Lebron James	Los Angeles
104	Michael Jordan	Chicago

users (user id, name, city, birthdate)

brithdate <null> <null>

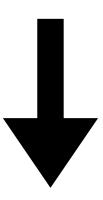
30/12/1984

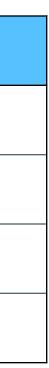

17/02/1963

items

<u>1</u>	title	company	price
	iPad	Apple	\$499
	iPhone	Apple	\$899
	55' LED TV	Samsung	\$1549
	USB charger	Chicago	17/02/1963

items (item id, title, company, price)


SQL as API


SELECT user_id, name FROM users WHERE city = "Tel Aviv" ORDER BY name

users

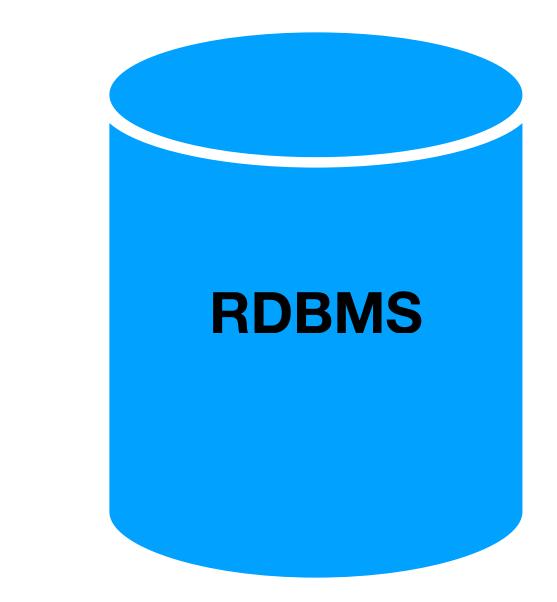
ser id	name	city	brithdate
101	Rubi Boim	Tel Aviv	<null></null>
102	Tova Milo	Tel Aviv	<null></null>
103	Lebron James	Los Angeles	30/12/1984
104	Michael Jordan	Chicago	17/02/1963

user_id	name
101	Rubi Boim
102	Tova Milo

Data integrity in RDBMS

- Referential integrity support primary and foreign keys
- ACID transactions support Atomicity, Consistency, Isolation, Durability

 One of the best features of RDBMS compared to NoSQL



RDBMS is a swiss pocket knife

You can implement almost anything with it. But sometimes it is better to use a dedicated tool

