Data Modeling in NoSQL (C*) -
Advanced

Happens to the best

* |n 2019 Jennifer Aniston joined Instagram and posted a
single photo

* 1m followers after 5 hour and 16 minutes from registering
world record

* More than 7m follower (24 hours)

* More than 9m likes for that photo (24 hours)

* Instagram crashed temporarily

Previously we learned

* Each query should be satisfied by one partition
denormalization...

videos_by _genre
genre K
release_date A4
video_id v
videos by id
video_id K

release date

title

rating

duration

{genres}

Previously we learned

* Each query should be satisfied by one partition
denormalization...

videos_by_genre SELECT video id
genre K FROM videos by genre
release_date v WHERE genre = "action
video_id v *
for (video : result) {
videos by id SELECT *
video_id K FROM videos by genre

WHERE video i1d = wvideo
release date —

title } /\

rating

_ How many queries can this
duration generate?

{genres}

Previously we learned

* Each query should be satisfied by one partition

denormalization...

videos_by _genre

videos_by genre

genre K
release date v
video id v
videos by id
video_id K

genre K
release_date v
video_id v
title

rating

duration

release date

title

rating

duration

{genres}

Previously we learned

* Each query should be satisfied by one partition

denormalization...

videos_by _genre

genre

release date

video id

SELECT *

FROM videos by genre
WHERE genre = “action”

A

videos_by genre

genre

release date

video id

videos by id

video_id

We add (“duplicate”) all the
attributes we need for the

query

title

rating

release date

title

rating

duration

{genres}

duration

But what happens if the partition is “large”

* [here can be more than 10m rows In this partition

views_by video

video_id BIGINT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

B 1000+
nodes

Large partitions

» Cause performance iSsues:
- compactions are slower
- queries are slower
- repailrs can falil
- adding more nodes won'’t help

e Can cause hotspots
more on this later

* Data Is not distributed evenly throughout the cluster

* We need to model differently to avoid

8

Large partitions in Cassandra

* Rule of thumb: partition size < 100MB size / 100k rows

You can go higher with newer Cassandra versions

* You would need to estimate the size in advance
Unless you learn the hard way you have a problem

How to avoid large partitions?

* The solution Is easy:
split the data into more partitions

* When querying, the data is too big anyway for a

single call
The driver automatically breaks the result into “pages”
(default = 5000) even for a single partition

How to avoid large partitions?

* The solution Is easy:
split the data into more partitions

* When querying, the data is too big anyway for a

single call
The driver automatically breaks the result into “pages”
(default = 5000) even for a single partition

How to split I1s the name of the game

“Choosing how to partition the
data is not trivial,

It IS hard.”

What is a good split?

user_id BIGINT K
view_id TIMEUUID WV
device TEXT
video |d BIGINT

13

video id BIGINT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

What is a good split?

This Is great as a single user
probably won’t view over 100k

videos
views_by user views_by video
user_id BIGINT K video_id BIGINT K
view id TIMEUUID V view_id TIMEUUID V
device TEXT device TEXT
video_id BIGINT user_id BIGINT

14

What is a good split?

This Is great as a single user

probably won’t view over 100k Problematic as some videos

has more than 10m views

videos
views_by user views_by video
user_id BIGINT K video_id BIGINT K
view id TIMEUUID V view_id TIMEUUID V
device TEXT device TEXT
video_id BIGINT user_id BIGINT

15

What is a good split?

This Is great as a single user

probably won’t view over 100k Problematic as some videos

has more than 10m views

videos
views_by user views_by video
user_id BIGINT K video_id BIGINT K
view id TIMEUUID V view_id TIMEUUID V
device TEXT device TEXT
video_id BIGINT user_id BIGINT

It depends on the query we need to answer
AND the data distribution

16

Points to remember when splitting

e Size limit
large partitions causes performance Issues

* Over shrinking
when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions

with 1 row

e “Known” partition keys
when querying, the values of the partition keys are needed

* Hot spots

undistributed writes/reads causes performance issues

 JTombstones
too much deletes within a partition causes performance issues

17

Points to remember when splitting

e Size limit
large partitions causes performance ISsues

-~

Points to remember when splitting

e Size limit
large partitions causes performance ISsues

/\
-

views_by video

, _ ~ R
video_id BIGINT K

<< 10m views for a single video

- J

view id TIMEUUID WV

device TEXT

user_id BIGINT

19

Points to remember when splitting

* Over shrinking

when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions
with 1 row /\

4 N

Points to remember when splitting

* Over shrinking

when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions

/\

-~

with 1 row
views_by time
year INT K
month INT K
day INT K
hour INT K
minute INT K
view id TIMEUUID WV
video_id BIGINT
device TEXT
user_id BIGINT

A partition for every minute

views_by time

A partition for every day

year INT K
month INT K
day INT K
view id TIMEUUID WV
video_id BIGINT
device TEXT
user_id BIGINT

~

Points to remember when splitting

e “Known” partition keys
when querying, the values of the partition keys are needed

/\
-

Points to remember when splitting

e “Known” partition keys
when querying, the values of the partition keys are needed

/\
-

views_by_ view

_ , 4 A
view id TIMEUUID K

< How can we know the view id values?

- J

video_id BIGINT

device TEXT

user_id BIGINT

Points to remember when splitting

-~

.

\V4
* Hot spots

undistributed writes/reads causes performance issues

Points to remember when splitting

-~

views_by_time - ~
year INT K <
month INT K During each month only 1 node handles all the writes

' ' TIMEUUID V¥ -
view_id e Assuming a 10k node cluster, 9999 server are

video_id ~ BIGINT unused (CPU & Storage)
device TEXT

_ J
user_id BIGINT

.

\V4
* Hot spots

undistributed writes/reads causes performance issues

25

Points to remember when splitting

-~

.

\V4
 JTombstones
too much deletes within a partition causes performance issues

Points to remember when splitting

-~

4)
queues —A queue for managing tasks (FIFO)

queue_name TEXT K Once a task is done, it is deleted from the queue
task_id TIMEUUID A
task desc — Recall - during gc grace seconds (10 days):

e Warnings after 1k tombstones

e Partition crash after 100k tombstones

_

-

\V4
 JTombstones
too much deletes within a partition causes performance issues

27

Again - this is important!

e Size limit
large partitions causes performance Issues

* Over shrinking
when guerying, It Is better to contact 1 partition with 10k rows vs 10k partitions

with 1 row

e “Known” partition keys
when querying, the values of the partition keys are needed

* Hot spots

undistributed writes/reads causes performance issues

 JTombstones
too much deletes within a partition causes performance issues

28

Splitting strategies

* You can NOT satisfy all requirements for any strategy

* One is not better or worse than the other
only more suitable to a specific example and data distribution

* Goal: learn different strategies and match the best
model to each different problem

Option 1 - split with existing column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 1 - split with existing column

p views_by video
Note - the query video_id BIGINT K
nheeded is “by video” view id TIMEUUID W

although we add more device TEXT

. partition keys user id BTGINT

4

31

Option 1 - split with existing column

views_by video

video |d BIGINT
user_id BIGINT
view Id TIMEUUILID
device TEXT

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
view id TIMEUUID
device TEXT
user_id BIGINT

32

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT

Option 1 - split with existing column

views_by video
video_id BIGINT K
view id TIMEUUID WV
device TEXT
user_id BIGINT
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT
user_id BIGINT K VS view_id TIMEUUID K VS device TEXT
view Id TIMEUUID VWV device TEXT view id TIMEUUID
device TEXT user_id BIGINT user_id BIGINT
— N
size limit

X over shrinking
X known partitions
hot spots

| tombstones
_ J

33

Option 1 - split with existing column

views_by video

video |d BIGINT

user id BIGINT

view Id TIMEUUILID

device TEXT

/N

g
size limit

X over shrinking

X known partitions
hot spots

tombstones

_

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT

view id TIMEUUID

device TEXT

user _id BIGINT

/N

g
size limit

X over shrinking

X known partitions
hot spots

tombstones

34

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT

Option 1 - split with existing column

views_by video

video |d BIGINT

user id BIGINT

view Id TIMEUUILID

device TEXT

/N

P
- size limit
X over shrinking
X known partitions
hot spots

tombstones

_

VS

views_by video
video_id BIGINT
view_Id TIMEUUID
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT

view id TIMEUUID

device TEXT

user _id BIGINT

/N

g
- size limit
X over shrinking
X known partitions
hot spots

tombstones

35

VS

views_by video

video _Id BIGINT
device TEXT
view Id TIMEUUILID
user_id BIGINT
/N
-
X size limit

over shrinking
known partitions
hot spots
tombstones

Option 2 - split with artificial (time) column

views_by video

video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

37

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video_id BIGINT K N
year INT K What to do if this
month INT K partition is not small
view_id TIMEUUID W enough?
device TEXT o
user_id BIGINT

38

Option 2 - split with artificial (time) column

views_by video

views_by video
video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

video id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID V
device TEXT

user_id BIGINT

39

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT
4
views_by video views_by video
video_id BIGINT K video_id BIGINT K N
year INT K year INT K We can have the same
month INT K month INT K problem. How can we
view id TIMEUUID WV day INT K solve it without the
. . , need to change the
device — View_id PIMEUULD schema each time?
user_id BIGINT device TEXT L ,
user_id BIGINT

40

views_by video

views_by video
video_id BIGINT
view_id TIMEUUID WV
device TEXT
user_id BIGINT

4

-

Assume the time is 2021/12/22 14:54:34:3233

OptiOn 2 - Split With artifi‘ Round the TS before you insert the data

views_by video

video |d BIGINT K
year INT K
month INT K
view_id TIMEUUID V¥
device TEXT
user_id BIGINT

video id BIGINT K
year INT K
month INT K
day INT K
view_id TIMEUUID V
device TEXT

user_id BIGINT

41

J

® By year use 2021/01/01 00:00:00:0000
e By month use 2021/12/01 00:00:00:0000
e By day use 2021/12/22 00:00:00:0000
® By hour use 2021/12/22 14:00:00:0000
® By minute use 2021/12/22 14:54:00:0000
° ...

e *use GMT=0 to avoid timezones / daylight

\/
views_by video
video_id BIGINT K

ts_partition TIMESTAMP K

view_id TIMEUUID WV
device TEXT
user id BIGINT

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID WV
device TEXT
user_id BIGINT
4
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT K
year INT K year INT K ts_partition TIMESTAMP K
month INT K month INT K view_Id TIMEUUID WV
view_id TIMEUUID V¥ day INT K device TEXT
device TEXT view id TIMEUUID V¥ user id BIGINT
user_id BIGINT device TEXT . RN .
user id BICGINT ? size limit
p ? over shrinking
For most days ok, - known partitions
except aired date of ? hot spots
new episodes ? tombstones
% - Y

Option 2 - split with artificial (time) column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT
4
views_by video views_by video views_by video
video_id BIGINT K video_id BIGINT K video_id BIGINT K
year INT K year INT K ts_partition TIMESTAMP K
month INT K month INT K view_id TIMEUUID V¥
view_id TIMEUUID V¥ day INT K device TEXT
device TEXT view id TIMEUUID V user id BIGINT
user_id BIGINT device TEXT . RN .
user id BIGINT ? size limit
- p ? over shrinking
Note - “by minute” might be For most days ok, - known partitions
needed for “Game of Thrones” except aired date of ? hot spots
lout not for all other 5000 shows | new episodes \? tombstones)

Option 3 - split with bucket column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 3 - split with bucket column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

o Start with bucket 0.
e |f more than X (50k?)

views, advance to
bucket 1

45

Option 3 - split with bucket column

views_by video
video id BIGINT K
view id TIMEUUID W
device TEXT
user _id BIGINT
. 2
e Start with bucket O. views_by_video
video id BIGINT K
bucket INT K
?
. If more than X (50k?) vew id oo v
views, advance to device B
bucket 1 user _id BIGINT

views_by video_ buckets
(o _ video id BIGINT K
This table will help us buckets INT W

“count” the number of .
view per bucket VIEWS COUNTER ++

_

46

Option 3 - split with bucket column

e Start with bucket 0.

* |f more than X (50k?)

views, advance to
bucket 1

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video
video id BIGINT K
bucket INT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

n n n \
- size limit
- over shrinking

views_by video_ buckets

-

This table will help us
“count” the number of
view per bucket

known partitions
? hot spots
tombstones

N
e N

Great option,
but not trivial to maintain the

logic on the backend

video Id BIGINT K
buckets INT V
VIEWS COUNTER ++

47

- J

-

Pros
® Guaranteed max size

e Can grow without a limit

® \When queuing - optimized for the number of calls
e we do not have “small” partitions

® Ordered by TS across all partitions
(only if we always add “new” data)

Cons

e |f we add “old” data, the TS is NOT ordered across
all partitions

® We can NOT “find” a specific event as we do not
know on which partition the data is saved
in the example - we can NOT know if a specific
view_id exists without reading all partitions

.

~

deo
CINT K

JULD V
B XT
s INT

ideo
[GINT K
INT K
"UUID WV
TEXT
[GINT

buckets

BTIGINT K

/ INT V

| WAW LW A\ U2 IS

VIEWS

COUNTER 4+

48

oucket column

g

size limit

over shrinking
known partitions
hot spots
tombstones

N

-

_

but not trivial to maintain the

N
Great option,

logic on the backend

J

Option 4 - split with partition column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 4 - split with partition column

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

50

Option 4 - split with partition column

views_by video
video_id BIGINT K
view id TIMEUUID WV

device TEXT
user_id BIGINT

4

*Decide on max partition . .
_ views_by video
size (10007?) video_id BIGINT K
partition INT K
e Use a “hash function” to view_id ~ TIMEUUID V¥
distribute the data evenly |@¢vc® e
- user _id BIGINT
across the partition

51

Option 4 - split with partition column

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

*For example modulo:
partition =
user id % 1000

views_by video
video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT
4
views_by video
video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

52

Option 4 - split with partition column

views_by video
video Id BIGINT K
view id TIMEUUID WV

device TEXT
user_id BIGINT

4

*Decide on max partition . .
_ views_by video
size (10007?) video_id BIGINT K
partition INT K
e Use a “hash function” to view_id ~ TIMEUUID V¥
distribute the data evenly |@¢vc® e
- user _id BIGINT
across the partition

*For example modulo:

| |)
partition = < Data is distributed evenly
user id % 1000 g

O

53

Option 4 - split with partition column

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

*For example modulo:
partition =
user id % 1000

views_by video

video Id BIGINT

view id TIMEUUID WV

device TEXT
user_id BIGINT
¢
views_by video

video Id BIGINT
partition INT
view Id TIMEUUID
device TEXT
user id RIGINT

54

- size limit
? over shrinking

known partitions
hot spots
tombstones

/\

-

~N

Not all videos need the
same partition size

Option 4 - split with partition column

*Decide on max partition
size (10007?)

*Use a “hash function” to
distribute the data evenly
across the partition

*For example modulo:
partition =
user id % 1000

views_by video

video Id BIGINT

view id TIMEUUID WV

device TEXT
user_id BIGINT
¢
views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user id RIGINT

55

What about the order of the data?

\V4

- size limit
? over shrinking

known partitions
hot spots
tombstones

/\

-

~N

Not all videos need the
same partition size

Option 4 - split with partition column

views_by video 4)
video_id BIGINT K
view id TIMEUUID WV When we read the data, it is NOT ordered by the
] evi;e —— “global” view_id, but per partition.
user_Id ‘BIGINT Can (maybe) cause logic problems for the client
. : - L)
Demde on max partition views by video \/
size (10007?) video_id BIGINT K . A
— size limit
partition INT K < ? over shrinking
e Use a “hash function” to view id ~ TIMEUUID ¥ known partitions
distribute the data evenly @&V e not spots
'y user _id BIGINT A tombstones)
across the partition —
4)
® FOr example mOdulO: Not all videos need the

£ same partition size
Partlitlon =

user id % 1000) ’

56

Option 5 - combo (variable partition size)

views_by video

video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

Option 5 - combo (variable partition size)

views_by video
video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

58

Option 5 - combo (variable partition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

views_by video

video_id BIGINT
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

views_by video_paritions

video Id

BIGINT K

partitions_total

INT

59

-
“Normal” videos:

“Popular” videos:

partition total

partition total

-1

user id % 1000

J

~

Option 5 - combo (variable partition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

views_by video

video_id BIGINT K
view id TIMEUUID W
device TEXT
user_id BIGINT

4

views_by video

video Id BIGINT
partition INT
view_id TIMEUUID
device TEXT
user_id BIGINT

views_by video_paritions

video Id

BIGINT K

partitions_total INT

60

-

N
A logic is required to

set the right
partitions_total for

each video
_ J
N
= = u \
- size limit
over shrinking
known partitions
hot spots
tombstones
N Y,
(=
“Normal” videos:
partition total = -1
“Popular” videos:
partition total = user i1d % 1000

~

Option 5 - combo (variable par:tition size)

*\/ariable max partition
size per video

*Use a “hash function” to
distribute the data evenly
across the partition
(with special logic)

4

views_by video
video Id BIGINT K
partition INT K
view_id TIMEUUID V
device TEXT
user_id BIGINT

views_by video_paritions

video Id BIGINT K

partitions_total INT

61

each video
__

partitions_total for

NS

size limit
over shrinking

known partitions

= = =] = \
views_by_video Discussion - why did we chose “-1”
video_id BIGINT K for “normal” users and not “0”
view id TIMEUUID W . \ - _
device TEXT A logic is required to
user_id BIGINT set the right

hot spots
tombstones
N Y,
(=
“Normal” videos:
partition total = -1
“Popular” videos:
partition total = user i1d % 1000

~

-

.) jriable partition size)
We want to support the option to “transition” state -

N
from “normal” to “poplar” Discussion - why did we chose “-1”
. for “normal” users and not “0” -

—> we need to use “different” partitions for each state m s — _ N
in order to “reinsert” the data on “transition” o A logic is required to
[NT set the right
partitions_total for
. each video
“Normal” videos: " N Y
i partition total = -1 €0 hvd
“Popular” videos: S size limit)
partition total = user 1d % 1000 INT K over shrinking
“Super popular” videos: JUID V known partitions
partition total = 10000 + (user 1d % 10000)
o — - TEXT hot spots
GINT tombstones
UTSUTOUTE e Udta EVEITy ~ g
u n (
across the partition views_by video paritions | | “Normal” videos:
- - - video id BIGINT K partition total = -1
(with special logic) o " lepopular videos:
partitions_total partition total = user id % 1000

= /

62

-

.) jriable partition size)
We want to support the option to “transition” state -

N
from “normal” to “poplar” Discussion - why did we chose “-1”
. for “normal” users and not “0” -

—> we need to use “different” partitions for each state v e ~

in order to “reinsert” the data on “transition” Pt A logic is required to
| ‘ [NT set the right

partitions_total for
_ each video
“Normal” videos: 4 N J
i partition total = -1 €o A
y T . BCINT K .. A
Popular” videos: - size limit

partition total user 1d % 1000 INT K

_ over shrinking
“Super popular” videos: JUID WV

known partitions

partition total = 10000 + (user 1d % 10000) P

o — - TEXT hot spots
GINT tombstones
UTSUTOUTE e Udta EVEITy ~ g
u n (
across the partition views_by video paritions | | “Normal” videos:
(with special logic) o " lepopular videos:
partitions_total partition total = user id % 1000

= /

63

Why did Instagram crushed?

* Instagram has different write paths for “top users”
that is, different data models and different app logic

* [here Is an application logic that transition a
user from a “regular” user to a “top user”

* The (regular) data model used did not scaled y

*1 - speculation

*2 - more Info on “data modeling examples”

64

Splitting strategies - reminder

* One is not better or worse than the other
only more suitable to a specific example and data distribution

