
Proprietary + Confidential

Introduction to Google
BigQuery

Ido Flatow
Cloud Solutions Architect, Google Cloud, EMEA

Proprietary + ConfidentialProprietary + Confidential

BigQuery Introduction

Proprietary + Confidential

Proprietary + Confidential

What is BigQuery?

● BigQuery is Google Cloud Platform’s data warehouse solution to
perform high speed, scalable and interactive analysis on data.

● It sits under the Big Data product category for Google Cloud
Platform and is useful for storing petabytes of data as well as
performing analysis on that data.

● It is built on the principle that double the amount of data queried
should not take double the time to return results.

● BigQuery data can also be used in other tools like Google’s Data
Studio, Data Lab and others.

Proprietary + Confidential

Proprietary + Confidential

BigQuery: 100% serverless data warehouse

Fully Managed and Serverless

Google Cloud’s Enterprise Data
Warehouse for Analytics

Petabyte-Scale and Fast
Convenience of Standard SQL

Encrypted, Durable and Highly
Available

Proprietary + Confidential

Proprietary + Confidential

OLTP OLAP

OnLine Transaction Processing OnLine Analytical
Processing

Data Source Operational Historical

Focus Updating/Retrieve Reporting

Queries Simple Complex

Query Latency Low High

Google Cloud Platform
Products Cloud

SQL
Cloud

Datastore
BigQueryBigTable

OLAP vs OLTP: Which fits my use case?

Cloud
Spanner

Proprietary + Confidential

Proprietary + Confidential

BigQuery | Architecture
Decoupled storage and compute for maximum flexibility

SQL:2011
Compliant

Streaming
Ingest

Free Bulk
Loading

REST API

Client Libraries
In 7 languages

Web UI, CLI

Petabit Network

BigQuery High-Available Cluster
Compute (Dremel)

Replicated, Distributed
Storage

(99.9999999999% durability)

Distributed Memory
Shuffle Tier

ODBC/JDBC

Colossus Storage Custom CPUs

Gmail, YouTube, AdWords,
Machine Learning, Search

Proprietary + Confidential

Proprietary + Confidential

BigQuery Structure

Tables

Each dataset has tables that
contain the data following a
schema that describes the field
names, types and other useful
information that we can query.

3

Data Set

A Project has datasets that
allow us to organize and

control the access to the
tables that are contained in

them.

2

Project

Main Containers in BigQuery are
called Projects, they store billing
information and list of users with
access.

1

Proprietary + Confidential

Proprietary + Confidential

Project X

project.dataset.table

What are some
reasons to
structure your
information into:
● Datasets?
● Projects?
● Tables?

Dataset A

Table 1

Table 2

Dataset B

Table 1

Table 2

Project Y

Dataset C

Table 1

Table 2

Dataset D

Table 1

Table 2

BigQuery Service

BigQuery organizes data tables into units called datasets

BigQuery Structure

Proprietary + Confidential

Proprietary + Confidential

BigQuery Interface Walkthrough

https://docs.google.com/file/d/1_8lgxsqNiQLzNVkzX5vusyeHQufNeDtr/preview

Proprietary + ConfidentialProprietary + Confidential

BigQuery Query Engine

Proprietary + Confidential

Proprietary + Confidential

Separation of Storage and Compute

The Power of BigQuery

Master

ShardShard

ShardShard

ShardShard

Jupiter

Distributed Storage
(Colossus)

Borg
Cluster Management System

Dremel Query Engine
● Number of Shards based on query needs
● ANSI 2011 Standard SQL

Jupiter
● High Speed, petabit network

Colossus
● Distributed, columnar storage

Groupings of Compute Resources

Proprietary + Confidential

Proprietary + Confidential

Query Syntax

Comment
SELECT Statement

FIELDS

FROM TABLES

WHERE CLAUSES

ORDER BY
GROUP BY
LIMIT

ALIAS

Proprietary + Confidential

Proprietary + Confidential

MapReduce

Proprietary + Confidential

Proprietary + Confidential

Query Processing Example

#StandardSQL
SELECT state, year, COUNT(*) AS count_babies
FROM `bigquery-public-data.samples.natality`
WHERE year >= 1980 and year < 1990
GROUP BY state, year
ORDER BY 3 desc
LIMIT 10

Count of babies by
state, year

Proprietary + Confidential

Proprietary + Confidential

WRITE: count_babies, state, year BY HASH(0, state)
AGGREGATE: count(*) AS count_babies, GROUP BY state,
year
READ: state, year WHERE year >= 1980 AND year < 1990

~137M rows in

~48K rows output (after Stage 1)

WRITE: count_babies, state, year
AGGREGATE: SUM_OF_COUNTS(count_babies)
READ: count_babies, state, year FROM stage 1

90 rows output (after Stage 2)

WRITE: count_babies, state, year
LIMIT: 10
READ: count_babies, state, year FROM stage 2

10 rows (output)

Stage 1

Stage 3

Stage 2

Master

Shard Shard

Distributed storage
(Colossus)

Network (Jupiter)

Shard Shard

Query Processing Example

Proprietary + Confidential

BigQuery remote memory shuffle

Shuffle

Worker

Worker

GROUP BY
state COUNT(*)

SELECT
state

Worker

Worker

Worker

ORDER BY year...
SHUFFLE

Distributed
Storage

Faster performance for complex queries

Join and aggregate more data

Better scalability

Proprietary + Confidential

Proprietary + Confidential

Let’s do a (bigger) query …
#standardsql
SELECT
 /* Replace underscores in the title with spaces */
 REGEXP_REPLACE(title, r'_', ' ') AS regexp_title, views
 FROM
 (SELECT title, SUM(views) as views
 FROM `bigquery-samples.wikipedia_benchmark.Wiki`
 WHERE
 NOT title like '%:%'
 AND wikimedia_project='wp'
 AND language='en'
 /* Match titles that start with 'G', */
 /* end with 'e', and contain two 'o's */
 AND REGEXP_CONTAINS(title, r'^G.*o.*o.*e$')
 GROUP BY
 title
 ORDER BY
 views DESC
 LIMIT 100)

Find most viewed wiki
articles that contain regex:

^G.*o.*o.*e$

Proprietary + Confidential

Proprietary + Confidential

#standardsql
SELECT
 /* Replace underscores in the title with spaces */
 REGEXP_REPLACE(title, r'_', ' ') AS regexp_title,
views
 FROM
 (SELECT title, SUM(views) as views
 FROM `bigquery-samples.wikipedia_benchmark. Wiki`
 WHERE
 NOT title like '%:%'
 AND wikimedia_project='wp'
 AND language='en'
 /* Match titles that start with 'G', */
 /* end with 'e', and contain two 'o's */
 AND REGEXP_CONTAINS(title, r'^G.*o.*o.*e$')
 GROUP BY
 title
 ORDER BY
 views DESC
 LIMIT 100)

Let’s do a (bigger) query …

http://www.youtube.com/watch?v=BJQRb3xx_3g

Proprietary + Confidential

Proprietary + Confidential

Serial vs Parallel
● BigQuery Execution Time: 38 seconds

○ 4TB of data read

○ 100 billion regular expressions run

○ 276 GB shuffled (read post-filter)

● Serial execution times for each task

○ 11.6 hrs to read 4TB from disk (@ 100MBps)

○ 27 hrs to run 100b regexps (@1 μsec each)

○ 37 minutes to shuffle 278 GB across the network (@ 1Gbps)

Serial execution takes
almost 40 hrs.

Proprietary + Confidential

Proprietary + Confidential

Some BigQuery Stats

10.5 Trillion

2.1 petabytes

62 petabytes

4.5 million rows/sec

Largest query (rows)

Largest query (data size)

Largest storage customer

Peak ingestion rate

Proprietary + Confidential

Proprietary + Confidential

SELECT COUNT(*) FROM

wikipedia_benchmark.Wiki1B

WHERE title LIKE "G%o%o"

Simple query execution - explain plan

Proprietary + Confidential

Proprietary + Confidential

SELECT COUNT(*) FROM

wikipedia_benchmark.Wiki10B

WHERE title LIKE "G%o%o"

SELECT COUNT(*) FROM

wikipedia_benchmark.Wiki100B

WHERE title LIKE "G%o%o"

Simple query execution - more data

Proprietary + ConfidentialProprietary + Confidential

BigQuery Storage

Proprietary + Confidential

Proprietary + Confidential

Record Oriented Storage
Supports transactional updates

Relational Database BigQuery Storage

Each column is seperate, compressed,
encrypted file, replicated three times. No
indexes, keys or partitions required; for
immutable massive datasets.

BigQuery Storage is columnar

BigQuery Structure

Proprietary + Confidential

Proprietary + Confidential

Row based
Storage

● Read less data faster
● Skip unused columns
● Column compression > Row Compression
● Supports vectorized columnar processing

Proprietary + Confidential

Proprietary + Confidential

BigQuery
Capacitor
Files

Proprietary + Confidential

Proprietary + Confidential

Dictionary

SELECT play_count FROM songs WHERE name LIKE “%Sun%”;

Storage Engine: Capacitor

0

1

1

0

2

1

LIKE “%Sun%”

LIKE “%Sun%”

LIKE “%Sun%”

0

1

2

F

F

T

Data Emit

{7833}

Filter Lookup

xc*

c8!

8ec

7h!

a7c

c-%

Hey Jude

My Michelle

Here Comes the Sun

Proprietary + Confidential

Proprietary + Confidential

name LIKE “%Sun%”;

Dictionary

Proprietary + Confidential

Proprietary + Confidential

Dictionary

name LIKE “%Sun%”;

Dictionary

LIKE “%Sun%”

LIKE “%Sun%”

LIKE “%Sun%”

0

1

2

F

F

T

Filter Result

Hey Jude

My Michelle

Here Comes the Sun

Proprietary + Confidential

Proprietary + Confidential

Dictionary

name LIKE “%Sun%”;

Dictionary

LIKE “%Sun%”

LIKE “%Sun%”

LIKE “%Sun%”

0

1

2

F

F

T

Filter Result

Hey Jude

My Michelle

Here Comes the Sun

SELECT COUNT(*) GROUP BY name

Proprietary + Confidential

Proprietary + Confidential

Dictionary

name LIKE “%Sun%”;

Dictionary

LIKE “%Sun%”

LIKE “%Sun%”

LIKE “%Sun%”

0

1

2

F

F

T

Filter Result

Hey Jude

My Michelle

Here Comes the Sun

Dictionary

SELECT COUNT(*) GROUP BY name

0

1

2

0

1

2

15

9

31

Group By Aggregation

Hey Jude

My Michelle

Here Comes the Sun

Proprietary + Confidential

Proprietary + Confidential

Q1

Q1

Q1

Q2

Q2

Q2

Q2

RLE

(3,Q1)

(4,Q2)

REGEXP_EXTRACT(Quarter, “(\d)+”)

(3,1)

(4,2)

Original RLE Result

Proprietary + Confidential

Proprietary + Confidential

Q2

Q1

Q2

Q1

Q2

Q1

Q2

Original

WA

OR

WA

OR

CA

WA

CA

RLE

Bread

Eggs

Milk

Bread

Eggs

Bread

Milk

0 RLE runs

Proprietary + Confidential

Proprietary + Confidential

Q2

Q1

Q2

Q1

Q2

Q1

Q2

Original

WA

OR

WA

OR

CA

WA

CA

RLE

Bread

Eggs

Milk

Bread

Eggs

Bread

Milk

Q1

Q1

Q1

Q2

Q2

Q2

Q2

Ordered

OR

OR

WA

CA

CA

WA

WA

Bread

Eggs

Bread

Eggs

Milk

Bread

Milk

0 RLE runs 5 RLE runs

Proprietary + Confidential

Proprietary + Confidential

Q2

Q1

Q2

Q1

Q2

Q1

Q2

Original

WA

OR

WA

OR

CA

WA

CA

RLE

Bread

Eggs

Milk

Bread

Eggs

Bread

Milk

Q1

Q1

Q1

Q2

Q2

Q2

Q2

Ordered

OR

OR

WA

CA

CA

WA

WA

Bread

Eggs

Bread

Eggs

Milk

Bread

Milk

Q1

Q1

Q1

Q2

Q2

Q2

Q2

OR

OR

WA

WA

WA

CA

CA

Eggs

Bread

Bread

Bread

Milk

Milk

Eggs

Optimal

0 RLE runs 5 RLE runs 7 RLE runs

Proprietary + Confidential

Proprietary + Confidential

BigQuery
Partitions &
Clustering

Proprietary + Confidential

3

1 21 3

Table 1 Table 2 Table 3

Zone A Zone B Zone C

Region

● Tables are stored in
optimized columnar format

● Each table is encrypted on
disk

● Storage is durable & each
table is replicated across
datacenters

2

Table 4

4 4

Customer A Customer B

BigQuery | Managed storage
Durable and persistent storage with automatic backup

Proprietary + Confidential

Proprietary + Confidential

BigQuery handles reliability automatically
so you don’t have to

No virtual machines to manage and
maintain BigQuery’s availability1

Automatic replication (minimum of 2 times)
in multiple regions/zones at any time2

Auto failover incases of zonal outages3

Maintains 99.99% uptime SLAs to meet
your business objectives4

Table changes in the last 7 days are
maintained, allowing for time travel5

Data is encrypted in transit and at rest
by default6

Proprietary + Confidential

Proprietary + Confidential

Connections to
Google Cloud
require TLS

Data is chunked and each
chunk is encrypted with its
own data encryption key

Data encryption keys
(DEKs) are wrapped using a
key encryption key (KEK)

Encrypted chunks and wrapped
encryption keys are distributed across
Google’s storage infrastructure.

Encryption by default in transit and at rest

Proprietary + ConfidentialProprietary + Confidential

BigQuery Scheduling

Proprietary + Confidential

Proprietary + Confidential

● Jobs start in the PENDING state.

○ Can transition to either RUNNING or DONE (due to timeout).

○ Most jobs immediately enter the RUNNING state.

● Jobs defer their RUNNING transition when:

○ BATCH priority: always defer at least 1 minute, longer if awaiting

quota or the individual server is nearing capacity.

○ INTERACTIVE priority: never.

● The Job server will periodically re-evaluate the deferment, with exponential

backoff.

Query Overview | Job Queueing

Job Server

Job Server

Job Server

Region

Job
Metadata

Proprietary + Confidential

Proprietary + Confidential

What is a slot?

A unit of compute within BigQuery:

● Encapsulates CPU, memory, disk
● In reality, a slice of a core (~0.5 CPU and ~0.5 GB of RAM)
● Dynamically sized based on query demands

Query Stages Tasks Slots
consists of consists of executes on

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

2. Query requests workers

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

2. Query requests workers

3. Workers
request one
task

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

2. Query requests workers

3. Workers
request one task

4. Worker requests
task info

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

2. Query requests workers

3. Workers
request one task

4. Worker requests
task info

5. Query master
dispatches task on
slot

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

2. Query requests workers

6. Query stats updated

3. Workers
request one task

4. Worker requests
task info

5. Query master
dispatches task on
slot

Proprietary + Confidential

Proprietary + Confidential

Scheduling Lifecycle

Query Master

Scheduler

Worker

Query Master
Query Master

Query Master

Worker
Worker

Worker

Worker
Worker

Worker
Worker

1. Query enters zone

2. Query requests workers

6. Query stats updated

3. Workers
request one task

4. Worker requests
task info

5. Query master
dispatches task on
slot

Proprietary + ConfidentialProprietary + Confidential

BigQuery Schema

Proprietary + Confidential

Proprietary + Confidential

Some things to keep in mind

BigQuery supports nested and
repeated columns

Storage is cheap!

BigQuery performance and query costs are
based on the amount of data scanned

Filtering on a clustered column may greatly
reduce the amount of data scanned

For each query, BigQuery executes a
full-partition column scan

BigQuery does not use or support indexes,
only partitioning and clustering

Proprietary + Confidential

Proprietary + Confidential

Schema design in a nutshell

Optimize to solve actual problems, not expected
ones (performance gets better over time)

When join time become excessively long, you want
to use nested repeated fields

Denormalization is NOT a requirement but
can speed up slow analytical queries by
reducing the amount of data to shuffle

Proprietary + Confidential

Proprietary + Confidential

Table performance / cost features

Partitioning

Filtering storage before query execution begins to reduce
costs. Reduces a full table scan to the partitions specified.
Single column, lower cardinality
(e.g. thousands of partitions).

● Time Partitioning (Pseudocolumn)
● Time Partitioning (User Date/Time Column)
● Integer Range Partitioning

Clustering

Storage optimization within columnar
segments to improve filtering and record
colocation. Clustering performance and cost
savings can't be assessed before query
begins. Prioritized clustering of up to 4
columns, on more diverse types (but no
nested columns).

Proprietary + Confidential

Proprietary + Confidential

BigQuery provides
Automatic re-clustering

free

maintenance-free

autonomous

Doesn’t consume your query resources

Requires no setup or maintenance

Automatically happens in the background

Proprietary + ConfidentialProprietary + Confidential

Loading Data into BigQuery

Proprietary + Confidential

Proprietary + Confidential

Loading data

Batch ingest is free

Doesn’t consume query capacity

ACID semantics

Load petabytes per day

Streaming API for real-time

Proprietary + Confidential

Proprietary + Confidential

Data ingestion options

Batch
ingestion

Data from GCS or via
HTTP POST

Multiple File Formats
Supported

Snapshot-based arrival -
All Data arrives at once,
or not at all

Streaming
ingestion

Continuous ingestion from
many sources (web/mobile
apps, point of sale, supply
chain)

Immediate query availability
from buffer

Deferred creation of
managed storage

Query
materialization

SELECT results yield data
in the form of tables, either
anonymous (cached) or
named destinations

ETL/ELT Ingest + Transform
via Federated Query

Data Transfer
Service (DTS)

Managed ingestion of other
sources (doubleclick,
adwords, youtube)

Newer: Scheduled Queries,
Scheduled GCS Ingestion

Options for third-party
integration

Proprietary + Confidential

Proprietary + Confidential

Ingestion formats

Faster

Avro (Compressed)

Avro (Uncompressed)

Parquet / ORC

CSV

JSON

CSV (Compressed)

JSON (Compressed)

Slower

BigQuery

Avro

Parquet

ORC

CSV

JSON

Proprietary + Confidential

Proprietary + Confidential

BigQuery streaming ingestion

Client Streaming server

BigTable

BigQuery streaming architecture
HTTPS Post individual rows or groups of rows

Up to 1M rows / second / table

Streaming inserts buffered in Bigtable

Hot tables spray across multiple zones

Proprietary + Confidential

Proprietary + Confidential

All Purpose Compute

 BigQuery Storage

BigQuery Compute

ANSI SQL

UDFs

BQML

BQGIS

Python

Go

Java

Jupyter

Pandas

Scikit

Keras

Theano

Beam

Spark

MapReduce

Flink

BigQuery storage API… treat Data Warehouse
storage like storage!

Real-time
1 sec to first byte

Fast
50Gb/sec

Flexible
Filters rows & columns

Proprietary + Confidential

Proprietary + Confidential

BigQuery storage API - Use cases

 BigQuery storage
Hadoop
Spark

Dataflow

ODBC
JDBC

Custom
connectors ?

High-perf dataframes

Unified batch & stream ETL

Third party tools

Break down the storage wall

http://go/blue-hexagons

Proprietary + ConfidentialProprietary + Confidential

BigQuery Performance Optimization

Proprietary + Confidential

Proprietary + Confidential

How do you optimize queries

➔ Less work → Faster Query

➔ What is work for a query?

◆ I/O — How many bytes did you read?
◆ Shuffle — How many bytes did you pass to the next stage?

● Grouping — How many bytes do you pass to each group?
◆ Materialization — How many bytes did you write?
◆ CPU work — User-defined functions (UDFs), functions

Proprietary + Confidential

Proprietary + Confidential

Don’t project unnecessary columns

● On how many columns are you operating?

● Excess columns incur wasted I/O and materialization

Don’t SELECT * unless you need every field

Proprietary + Confidential

Proprietary + Confidential

Filter early and often using WHERE clauses

● On how many rows (or partitions) are you operating?

● Excess rows incur “waste” similar to excess columns

Proprietary + Confidential

Proprietary + Confidential

Do the biggest joins first

● Joins — In what order are you merging data?

● Guideline — Biggest, Smallest, Decreasing Size Thereafter

● Avoid self-join if you can, since it squares the number of rows processed

Proprietary + Confidential

Proprietary + Confidential

Wildcard tables — Standard SQL (1 of 2)

● Use wildcards to query multiple tables using concise SQL statements

● Wildcard tables are a union of tables matching the wildcard expression

● Useful if your dataset contains:
○ Multiple, similarly named tables with compatible schemas
○ Sharded tables

● When you query, each row contains a special column with the wildcard
match

Proprietary + Confidential

Proprietary + Confidential

Wildcard tables — Standard SQL (2 of 2)

● Example:

FROM `bigquery-public-data.noaa_gsod.gsod*`

● Matches all tables in noaa_gsod that begin with string ‘gsod’

● The backtick (``) is required

● Richer prefixes perform better than shorter prefixes

○ For example: .gsod200* versus .*

Proprietary + Confidential

Proprietary + Confidential

Table Partitioning

● Time-partitioned tables are a cost-effective way to manage data

● Easier to write queries spanning time periods

● When you create tables with time-based partitions, BigQuery automatically loads

data in correct partition

○ Declare the table as partitioned at creation time using this flag:

--time_partitioning_type

○ To create partitioned table with expiration time for data, using this flag:

--time_partitioning_expiration

Proprietary + Confidential

Proprietary + Confidential

Example - Time Partitioning

Proprietary + ConfidentialProprietary + Confidential

BigQuery Slots and Reservations

Proprietary + Confidential

Proprietary + Confidential

BigQuery Reservations allows customers to:

● Control flat-rate spend
● Buy slots in Web UI in seconds
● Efficiently manage workloads in BigQuery
● Automatically share any unused capacity

Enterprise-grade
Workload management
With Reservations

Proprietary + Confidential

Proprietary + Confidential

Monthly Commitments

Ideal balance between
flexibility and cost.

Months Years

Annual Commitments

The most cost-effective
option for steady-state

workloads.

Flex Slots

Plan for business-critical
calendar events.

Hours
Days

Flex Slots

Rapidly respond to
business demands and
Evaluate performance.

Seconds
Minutes

BigQuery Commitment Types and Use Cases

Proprietary + Confidential

Proprietary + Confidential

BigQuery workload management

On-Demand

Project _f

Default
1000 slots

Project_a
Project_b
Project_c

BI
1500 slots

Project_d

best-effort
30 slots

Project_e

Idle slots seamlessly shared

Customers can
programmatically perform
workload management
using Reservations:

Create and delete reservations

Move projects between reservations

Move slots between reservations

Idle slots are seamlessly and
automatically shared in real-time

Example

At 3am an important workload in project_d needs to run

At 3am we create a reservation
Move 1000 slots to the reservation
Move project_d into reservation

Project_d was guaranteed 1000 slots 3am-6am

At 6am we delete the reservation
Move 1000 slots back
Move project_d back

Proprietary + ConfidentialProprietary + Confidential

BigQuery Specialities

Proprietary + Confidential

Proprietary + Confidential

Analyze GIS data
in BigQuery

BigQuery GIS
Accurate spatial analyses with Geography
data type over GeoJSON and WKT formats

Support for core GIS functions –
measurements, transforms, constructors,
etc. – using familiar SQL

Proprietary + Confidential

Proprietary + Confidential

Through SQL and within BigQuery

Leverage BigQuery’s processing power to build a model

Auto-tuned learning rate

Auto-split of data into training and test

Null imputation

Standardization of numeric features

One-hot encoding of strings

Class imbalance handling

Behind the scenes - BigQuery ML

Proprietary + Confidential

Proprietary + Confidential

WKT

GeoJSON

WKB

GIS Formats

Point

Linestring

Polygon

Multi-Polygon

Collections

Proprietary + Confidential

Proprietary + Confidential

BigQuery ML for predictive analytics

1

2

3

Execute ML initiatives without
moving data from BigQuery

Iterate on models in SQL in BigQuery
to increase development speed

Automate common ML tasks,
and hyperparameter tuning

Proprietary + Confidential

Proprietary + Confidential

Supported
models

Classification

Logistic regression

DNN classifier (Beta)

XGBoost classifier (Beta)

Regression

Linear regression

DNN regressor (Beta)

XGBoost classifier (Beta)

Other models

k-means clustering

Recommendation: Matrix
factorization (Beta)

Model import

Import TensorFlow and
XGBoost models for
prediction (Beta)

Proprietary + Confidential

Proprietary + Confidential

Time travel

Read data from any time within the last 7 days.

SELECT x, y
FROM dataset.table
FOR SYSTEM_TIME AS OF
 TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 3 DAY)

Proprietary + ConfidentialProprietary + Confidential

Higher Education Programs Summary

Proprietary + Confidential

Higher Education Programs
(https://cloud.google.com/edu)

Students Teaching Faculty Researchers

IT Admin /
Instructional

Learning Staff

Training Credits (Qwiklabs and Coursera)

GCP Credits for Teaching & Learning GCP Research Credits

Career Readiness Tracks (Coursera)

Faculty Experts Program

Google Cloud Certifications

Student Programming

Higher Ed Trainers

Instructor-Led Training

Customer Advisory Board

https://cloud.google.com/edu
#

Proprietary + Confidential

Higher Education Cloud Credit Programs

Training Credits
Get hands-on experience using
Google Cloud Platform with
training for everyone from
beginners through advanced
users.

Students & IT enablers can apply
for 200 Qwiklabs credits.

Credits for Learning
Currently students ask faculty
members to apply for credits for
courses and receive $50 in GCP
credits.

Get started with our trainings to
gain an understanding of GCP.

Career Readiness
Jump-start your career in cloud
technology.

Tap in to in-person training,
self-paced modules, and
professional courses to build
skills and prepare for
certification(s).

Students

#

Proprietary + ConfidentialProprietary + Confidential

Thank You!

