Cassandra - CQL

Dr. Rubi Boim

‘ world_record_egg & - Follow

Qv

55,957,347 likes

JANUARY 4, 2019

3
L.
©
L

-
2
- O
2 S
eS
£ 3 :
S & -
9 - 5
N
o
3:0
(o]
o <
O:Y
%m
Z
S
©
L
&3
(@)]
(o)}
Q
|
©
| -
o]
(&)
()
| -
|
: 7]
: Vm
S A“ng
N O
42
\' ;-
Nz
mvg,m
5N
T B

J world_record_egg & - Follow

QY

55,957,347 likes

JANUARY 4, 2019

leomessi & - Follow
Lusail Stadium

56,006,307 likes

1 DAY AGO

) world_record_egg % - Follow

QY

55,957,347 likes

JANUARY 4, 2019

@ leomessi & - Follow
Lusail Stadium

10m likes In first 39 minutes!
~4300 likes per seconds avg

56,006,307 likes

1 DAY AGO

@ jenniferaniston & - Follow
A

-
y -

QY

16,458,620 likes

OCTOBER 15, 2019

:’g’ leomessi & - Follow
: Lusail Stadium

10m likes In first 39 minutes!
~4300 likes per seconds avg

V@] M/

56,006,307 likes

1 DAY AGO

L\

A jenniferaniston & - Follow i@ leomessi & - Follow

Lusail Stadium

10m likes In first 39 minutes!
~4300 likes per seconds avg

9m likes in first 24 hours
~100 likes per seconds avg

16,458,620 likes 56,006,307 likes
OCTOBER 15, 2019 1 DAY AGO

A jenniferaniston & - Follow i& leomessi & - Follow

L\

Lusail Stadium

10m likes In first 39 minutes!
~4300 likes per seconds avg

9m likes in first 24 hours
~100 likes per seconds avg

16,458,620 likes 56,006,307 likes
OCTOBER 15, 2019 1 DAY AGO

Top 20 posts

Three accounts have more than one of the most-liked posts in the top 20: Lionel Messi has eight, Cristiano Ronaldo has three and Kylie Jenner has two.

Rank ¢ Account name $ Owner B Post description Post (ml;:::z:s) $ Dat(eu?r;s;ted
s Dioirisas Libhal Niessi Photo§ of Lionel Messi and his teammates after winning the 2022 FIFA World Cup with]2 57 1 December 18, 2022
Argentina
2 @world_record_egg | Chris Godfrey Photo of an egg [2] 2 56.1 January 4, 2019
3 @cristiano Cristiano Ronaldo Photo of Lionel Messi and Cristiano Ronaldo playing chess, advertising for Louis Vuitton [3] 2 42.1 November 19, 2022
4 @leomessi Lionel Messi Photo of Lionel Messi with the FIFA World Cup trophy [4] 2 34.2 December 19, 2022
5 @cristiaho , Cristiar\o Rona!do Their twins pregnancy announcement [5] 2 32.6 October 28, 2021
@georginagio Georgina Rodriguez
6 @leomessi Lionel Messi Photo of Lionel Messi and Cristiano Ronaldo playing chess, advertising for Louis Vuitton [6] 2 32.4 November 19, 2022
¥ @cristiano Cristiano Ronaldo Photo after 2022 FIFA World Cup elimination [7] 2 31.2 December 11, 2022
8 @xxxtentacion XXXTentacion Final post before his death [8] 2 30.4 May 20, 2018
9 @leomessi Lionel Messi Photos after 2022 FIFA World Cup game against Croatia [9] 2 28.5 December 13, 2022
10 @arianagrande Ariana Grande Photos from her wedding with Dalton Gomez [10] 2 26.3 May 26, 2021
i @zendaya Zendaya Happy birthday post to Tom Holland [11]2 25.7 June 1, 2022
12 @kyliejenner Kylie Jenner Second pregnancy announcement [12]2 24.8 September 8, 2021
13 | @tomholland2013 | Tom Holland Recreating the famous Spider-Man meme Printable version of this page [ctri-option-pl | fig|q [13]2 24.8 February 23, 2022
14 @leomessi Lionel Messi Photo after winning the 2022 FIFA World Cup game against Mexico [14] 2 24.2 November 26, 2022
15 @kyliejenner Kylie Jenner Photo of her daughter with her newborn brother [15] 2 22.9 February 6, 2022
16 @neymarijr Neymar Photo after 2022 FIFA World Cup elimination [16] 2 22.7 December 10, 2022
y 7 @billieeilish Billie Eilish Reveal of her blonde hair [17]2 22.6 March 17, 2021
18 @leomessi Lionel Messi Photo after 2022 FIFA World Cup game against Netherlands [18] 2 22.3 December 9, 2022
19 @leomessi Lionel Messi First post after signing with PSG [19]2 21.8 August 11, 2021
20 @leomessi Lionel Messi Photo with the Copa América trophy [20] 2 21.8 July 10, 2021
As of 20 December 2022

Cassandra CQL

* ferminology
e Keyspaces
* [ables

* Data types

« DDL / DML

Terminology (Cassandra)

similar to Schema » -

defines the node on
which data is stored

= | pantoniey
il

defines the order or
rows in a partition

Primary key

11

Keyspace

* High level container - AKA “schemas” from rDB

* replication factor strategy
e “SimpleStrategy”: entire cluster

e “NetworkTopologyStrategy”: different settings for each DS

12

Keyspace

CREATE KEYSPACE BigDataCourse WITH REPLICATION
'class' : 'SimpleStrateqgy’,
‘replication factor': 1

};

CREATE KEYSPACE BigDataCourse WITH REPLICATION
'class' : '"NetworkTopologyStrateqgy',
‘israel' : 3 , // Datacenter 1
'us' : 2 // Datacenter 2

};

13

Use & Describe
» USE: switch between key spaces in CQL

USE bigdatacourse

JAVA:
CassandraConnectionPool connectionPool.setKeyspace (“bigdatacourse”)

 DESCRIBE: display detailed information in CQL

(see manual for more options)

DESCRIBE KEYSPACES/KEYSPACE/TABLES/TABLE/...

14

CREATE TABLE

CREATE TABLE students (
columnl TEXT,
column?2 INT,
column3 UUID,
PRIMARY KEY (columnl)

) ;

CREATE TABLE [IF NOT EXISTS] [keyspace name. | table name (
column definition [, ...]
PRIMARY KEY (column name [, column name ...])
[WITH table options
CLUSTERING ORDER BY (clustering column name order])
ID = 'table hash tag'
COMPACT STORAGE]

15

Data types (basic)

e TEXT utf8

e INT signed 32bits

e BIGINT signed 64Dbits

e TIMESTAMP 64Dbits

e FLOAT 32bits floating point

e DOUBLE 64Dbits floating point

e DECIMAL variable-precision decimal

e UUID universally unique identifier, 128bits

e TIMEUUID sortable UUID, embedded timestamp

e BLOB arbitrary bytes

16

Data types (basic)

e TEXT utf8

e INT signed 32bits

e BIGINT signed 64Dbits

e TIMESTAMP 64Dbits

" FLOAL 32bits floating point regarglnei(s:tI ?)fa fhrgisuiilbr;cr)(cj)isr;odes
e DOUBLE 64Dbits floating point

e DECIMAL variable-precision decimal

e UUID universally unique identifier, 128bits

e TIMEUUID sortable UUID, embedded timestamp

e BLOB arbitrary bytes

17

Note on generating unique IDs

* Not trivial for distributed systems
 UUID / TIMEUUID are great

 Downside - requires 128bit
what’s the problem with java primitives?

Note on generating unique IDs

* Not trivial for distributed systems
 UUID / TIMEUUID are great

 Downside - requires 128bit
what’s the problem with java primitives?

Max primitive is 64bit (long)

More data types

e COUNTER

o [IST

T 1
e SET

e MAP

e More on these later...

SELECT

SELECT * FROM BigDataCourse

SELECT columnl , columnZ2 FROM BigDataCourse

SELECT columnl, column2 FROM BigDataCourse
WHERE columnl = "“1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

* “Limited” compared to RDBMS

sum / avg / min / max or only supported on new versions
no joins / having / union...

21

SELECT

SELECT * FROM BigDataCourse

SELECT columnl , columnZ2 FROM BigDataCourse

SELECT columnl, column2 FROM BigDataCourse
WHERE columnl = "“1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

o “Limited” COmpared .tO RDBMS Can be very slow and expensive - when?

sum / avg / min / max or only supported on new versions
no joins / having / union...

22

SELECT

SELECT * FROM BigDataCourse

SELECT columnl , columnZ2 FROM BigDataCourse

SELECT columnl,column2 FROM BigDataCourse
WHERE columnl = “1234” LIMIT 1

Even if counting a single row, it can be

expensive (on a really big wide row)

SELECT count(*) FROM BigDataCourse

o “Limited” COmpared tO RDBMS Can be very slow and expensive - when?

sum / avg / min / max or only supported on new versions
no joins / having / union...

23

SELECT - partitions and keys

 [LDR; provide the partition key to the query

SELECT * FROM users | e

WHERE user 1d = “1234”7 user_id K

name

birth_year
1000+ o
nodes

SELECT - partitions and keys

 What happens if no partition is given?

SELECT * FROM users

1000+
nodes

users

user id

name

birth_year

SELECT - partitions and keys

 What happens if no partition is given?

users

SELECT * FROM users

user id

name
We need to contact all servers
(as all partitions are valid) birth_year

26

 What happens if no partition is given?

SELECT * FROM users
We need to contact all servers
(as all partitions are valid)

This Is valid!

Lets see some examples

27

SELECT - partitions and keys

users

user id

name

birth_year

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

- If there are 100k users, would the query be optimal? users

(that is, we would not check unnecessary nodes/partitions)

1000

node

28

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

- If there are 100k users, would the query be optimal? users

(that is, we would not check unnecessary nodes/partitions)

YES - why?

1000

node

29

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

- If there are 100k users, would the query be optimal? users

(that is, we would not check unnecessary nodes/partitions)

YES - why?
There are 100k partitions which are distributed on 10k nodes

1000

node

30

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

- If there are 10 users, would the query be optimal? users

(that is, we would not check unnecessary nodes/partitions)

1000

node

31

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

- If there are 10 users, would the query be optimal? users

(that is, we would not check unnecessary nodes/partitions)

NO - why?

1000

node

32

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication

- If there are 10 users, would the query be optimal? users

(that is, we would not check unnecessary nodes/partitions)

NO - why?
There are 10 partitions which are distributed on 10k nodes.

We will initiate 9990 unnecessary calls

1000

node

33

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
- If there are 10 users, would the query be optimal?
(that is, we would not check unnecessary nodes/partitions)

users

NO - why?
There are 10 partitions which are distributed on 10k nodes.
We will initiate 9990 unnecessary calls

1000
node

The right way for this scenario is to

create a single partition for these
10 users, then read 1 partition

34

SELECT - partitions and keys

Each user “creates” a partition (user_id is partition_key) N

Assume there are 10k nodes in the cluster and no replication

- If there are 10
(that is, we wc SELECT * from <TABLE> - Summary

MURULLZE Although this is allowed - this is in general anti pattern

The there are Use with caution
nodes. We w

14PO0
ndde

The right way for this scenario is to

create a single partition for these
10 users, then read 1 partition

35

SELECT - partitions and keys

Note
K is the partition key (NOT the key)
Vv C is the clustering column,

° Try 2] d|ﬁerent model Together both are the key

SELECT * FROM users

WHERE country = "“israel” country K
user_id vC
name

birth_year

36

* Try a different model

SELECT * FROM users

WHERE country = “israel”

Reading the users from Israel is fast

37

SELECT - partitions and keys

users
country K
user_id vC
name
birth_year

* Try a different model

SELECT * FROM users

WHERE country = “israel”

What happen if the country is India?

38

SELECT - partitions and keys

users
country K
user_id vC
name
birth_year

SELECT - partitions and keys

* Try a different model

SELECT * FROM users e

WHERE country = “israel” country K
user_id vC
name
birth_year

What happen if the country is India?

How can you solve this issue?

39

SELECT - partitions and keys

* Try a different model

SELECT * FROM users e

WHERE country = “israel” country K
user_id vC
name

birth_year

What happen if the country is India?
How can you solve this issue? We can add “buckets” - more on this later
40

SELECT - partitions and keys

 What happens now?

SELECT * FROM users DR

WHERE country = "“israel” country

AND birth year = 1982

user id

name

birth_year

41

 What happens now?

SELECT * FROM users

WHERE country = “israel”

AND birth year

Error - why?

1982

SELECT - partitions and keys

users

country

user id

name

birth_year

SELECT - partitions and keys

 What happens now?

SELECT * FROM users

users

WHERE country = “israel” country K
AND birth year = 1982 user id ve
Nname
birth_year

Error - why?

Cassandra will need to read the entire partition.
If there are 1m users, and only 10k were born in 1982,
there would be an unnecessary read/filter of 990k users

 What happens now?

SELECT * FROM users
WHERE country = “israel”
AND birth year = 1982
ALLOW FILTERING

(ANTI PATTERN)

44

SELECT - partitions and keys

users

country

user id

name

birth_year

With “ALLOW FILTERING” Cassandra will approve the query

SELECT - partitions and keys

How can you support the query without

* What happens now? “ALLOW FILTERING”?
SELECT * FROM users LD
WHERE country = “israel” country K

AND birth year = 1982
ALLOW FILTERING

user id vC

name

birth_year

With “ALLOW FILTERING” Cassandra will approve the query
(ANTI PATTERN)

45

SELECT - partitions and keys

e Solved with denormalization

SELECT * FROM users by birth year
WHERE country = “israel”
AND birth year = 1982

* (we will talk about correct modeling later) |

46

users

country K
user_id vC
name

birth_year

users_by birth_year

country K
birth_year vC
user_id vC

name

SELECT - partitions and keys

e And what about this case?

SELECT * FROM users
WHERE city = “tel aviv”

47

users

country K
city K
neighborhood K
user_id vC

name

birth_year

SELECT - partitions and keys

_ users
 And what about this case? ountry
city
SELECT * FROM users neighborhood
WHERE city = “tel aviv” cer i ve
name
birth_year

Error - why?

48

SELECT - partitions and keys

e And what about this case?

SELECT * FROM users
WHERE city = “tel aviv”

Error - why?

Cassandra will need to contact all nodes and to check
If such partition exists

users
country K
city K
neighborhood K
user_id vC
name
birth_year

SELECT - partitions and keys

_ users
* And what about this case? ountry
city
SELECT * FROM users neighborhood
WHERE city = “tel aviv” cer i ve
ALLOW FILTERING -
name
birth_year

With “ALLOW FILTERING” Cassandra will approve the query

(again - ANTI PATTERN)

50

SELECT - ALLOW FILTERING

 Almost always ANTI PATTERN

* \We saw these use cases
* To “filter” columns in a single partition

e To “filter” partitions across nodes

users

country

city

neighborhood

user id

name

birth_year

1000+
nodes

SELECT - ALLOW FILTERING

 Almost always ANTI PATTERN

* \We saw these use cases
* To “filter” columns in a single partition

e To “filter” partitions across nodes

* Can you think of another example” :""‘

users

country

city

neighborhood

user id

name

birth_year

SELECT - ALLOW FILTERING

e Almost.=

SELECT * FROM users
WHERE name = “rubi boim"
o We s3 ALLOW FILTERING

e To “filter” columng|(in a single partition
e To “filter” partition$ across nodes

* To “filter” columnslacross partitions

53

users

country

city

neighborhood

user id

name

birth_year

INSERT

* Primary key Is obviously required

INSERT INTO BigDataCourse (columnl, column2)
VALUES (123, "name”)

54

INSERT - IF NOT EXISTS

 Requires read before write!

e Use with caution

INSERT INTO BigDataCourse (columnl , column2)
IF NOT EXSITS
VALUES (123, name”)

55

INSERT - IF NOT EXISTS

 Requires read before write!

e Use with caution

INSERT INTO BigDataCourse (columnl , column2)
IF NOT EXSITS
VALUES (123,"name”)

Note - writes are cheaper than reads. If there are not

too many writes, it is better to overwrite the same data
Instead of using “if not exists”

56

INSERT - USING TTL

* Time To Live - allows for automatic expiration (delete)
IN seconds

INSERT INTO BigDataCourse (columnl, column2)
VALUES (123, name”)
USING TTL 86400 // 24 hours

57

INSERT - USING TTL

* Time To Live - allows for automatic expiration (delete)
IN seconds

INSERT INTO BigDataCourse (columnl, column2)
VALUES (123, name”)
USING TTL 86400 // 24 hours

Creates tombstones
more on this later

58

UPDATE

* Primary key Is obviously required

UPDATE BigDataCourse
SET column2 = “name”, column3 = “abc”
WHERE columnl = 123

59

DELETE

e \Warning:
DELETESs in distributed databases is NOT TRIVIAL

* |In Cassandra in particular

* Deleted data is not removed immediately
a tombstone Is created

e More on this later

DELETE

e Delete data from a row

DELETE name FROM users
WHERE country = “israel”
AND user id = "“123”7

e Delete an entire row

DELETE FROM users
WHERE country = “israel”

61

users

country

user id

vC

name

birth_year

Truncate

* Removes all SSTables holding data
* Use with care

* (Avoids tombstones)

TRUNCATE users

ALTER TABLE

 Add / drop / rename existing columns
* *change datatypes (with restrictions)

 Change table properties
 Can NOT alter PRIMARY KEY columns
e RTFM)

ALTER TABLE [keyspace name.] table name
[ALTER column name TYPE cql type]

[ADD (column definition list)]

[DROP column list | COMPACT STORAGE]

[RENAME column name TO column name]
[WITH table properties];

63

