
Dr. Rubi Boim

Cassandra - Advanced Topics
Big Data Systems



Cassandra advanced topics
• Counters


• Collections


• UDTs


• Batches


• Lightweight transactions


• Tunable consistency


• Deletes & tombstones
2



Cassandra advanced topics
• Counters 

• Collections


• UDTs


• Batches


• Lightweight transactions


• Tunable consistency


• Deletes & tombstones
3



4



5

How can we calculate this?



6

How can we calculate this?

SELECT count(*) FROM likes_by_item 
WHERE itemID = 123456789



7

How can we calculate this?

SELECT count(*) FROM likes_by_item 
WHERE itemID = 123456789

What is the problem?



8

How can we calculate this?

SELECT count(*) FROM likes_by_item 
WHERE itemID = 123456789

What is the problem?

The “like” data is probably saved on several partitions. 
Will take too much time to read all data from all 

partitions and count all. 

We need this data in 1ms, not 10 seconds



Cassandra counters
• A special (powerful) data type 


• 64bit signed integer (long)


• Cannot be set - only increment/decrement  
(initial value == 0) 


• Used with “UPDATE”

9



Cassandra counters - example

10

CREATE TABLE movie_view_counts ( 
movie_id  BIGINT, 
view_count COUNTER, 
PRIMARY KEY (movie_id) 

);

UPDATE movie_view_counts  
SET view_count = view_count + 1 
WHERE movie_id = 123

SELECT view_count FROM movie_view_counts 
WHERE movie_id = 123



Cassandra counters - example

11

CREATE TABLE movie_view_counts ( 
movie_id  BIGINT, 
view_count COUNTER, 
PRIMARY KEY (movie_id) 

);

UPDATE movie_view_counts  
SET view_count = view_count + 1 
WHERE movie_id = 123

SELECT view_count FROM movie_view_counts 
WHERE movie_id = 123

You can also use “-“ and values 
different than 1



Cassandra counters - limitations
• Counter cannot be part of the primary key


• A table that contains a counter can only contain counters 
either all the columns of a table outside the PRIMARY KEY have the counter type, or 
none of them have it


• Counters does not support expiration (TTL)


• Not idempotent by nature


• Slight consistency issues in distributed scenarios 
due to in-memory and speed optimizations to deal with “read before write”


• Counters can be deleted, but not reused 
can you think of an example this might cause a problem?

12



Cassandra counters - limitations
• Counter cannot be part of the primary key


• A table that contains a counter can only contain counters 
either all the columns of a table outside the PRIMARY KEY have the counter type, or 
none of them have it


• Counters does not support expiration (TTL)


• Not idempotent by nature


• Slight consistency issues in distributed scenarios 
due to in-memory and speed optimizations to deal with “read before write”


• Counters can be deleted, but not reused 
can you think of an example this might cause a problem?

13

Think about an eCommerce store which saves a 
counter for the number of views for a specific item. 

The item is removed from the dataset and after a few 
months it is added again with the same id (key)



Question on the example
• Previous implementation counted the total views


• How can we support the query “views per day”?

14

CREATE TABLE movie_view_counts ( 
movie_id  BIGINT, 
view_count COUNTER, 
PRIMARY KEY (movie_id) 

);

(previous implementation)



Question on the example - answer
• Add a timestamp column to the key


• Describe a day by rounding (down) to 00:00:00 UTC

15

// a quick version instead of using calendar...
public static long getTSDayRound(long timestamp) {
long portion = timestamp % MILLISECONDS_IN_DAY;
return timestamp - portion;

}

// returns the round day for the current time
return getTSDayRound(System.currentTimeMillis());



Question on the example - answer

16

UPDATE movie_view_counts  
SET view_count = view_count + 1 
WHERE movie_id = 123 AND 

ts = 1627344000000 

SELECT view_count FROM movie_view_counts 
WHERE movie_id = 123 AND 

ts = 1627344000000

CREATE TABLE movie_view_counts_by_day ( 
movie_id  BIGINT, 
ts  TIMESTAMP, 
view_count COUNTER, 
PRIMARY KEY (movie_id, ts) 

);

July 27 2021



Question on the example (2)
• How can we support the query “views per day” and 

“views per month”?

17

(previous implementation)

CREATE TABLE movie_view_counts_by_day ( 
movie_id  BIGINT, 
ts  TIMESTAMP, 
view_count COUNTER, 
PRIMARY KEY (movie_id, ts) 

);



Question on the example (2) - answer
• Use the same table


• Use the same “day rounding (down)”


• Use a different query


• Group and sum results on client side

18

Client is the backend which uses 
Cassandra, not the end user



Question on the example (2) - answer

19

SELECT ts, view_count FROM movie_view_counts 
WHERE movie_id = 123 AND 

ts >= 1625097600000 AND 
ts <= 1627689600000

July 01 2021

July 31 2021

Query result
ts view_count

1625097600000 50,023
1625184000000 78,288

… …
1627689600000 28,052

final result - sum of all values (on client)

Client is the backend which uses 
Cassandra, not the end user



Question on the example (3)
• How can we support the query “views per day”,  

“views per month” AND “views per hour”?

20

(previous implementation)

CREATE TABLE movie_view_counts_by_day ( 
movie_id  BIGINT, 
ts  TIMESTAMP, 
view_count COUNTER, 
PRIMARY KEY (movie_id, ts) 

);



Question on the example (3) - answer
• Use the same table


• Use the a different rounding function: 
 “hour rounding (down)”

21

// a quick version instead of using calendar...
public static long getTSHourRound(long timestamp) {
long portion = timestamp % MILLISECONDS_IN_HOUR;
return timestamp - portion;

}



Discussion (1)
• What is the partition key in the examples? 

why is this super important here?

22

CREATE TABLE movie_view_counts_by_day ( 
movie_id  BIGINT, 
ts  TIMESTAMP, 
view_count COUNTER, 
PRIMARY KEY (movie_id, ts) 

);



Discussion (1)
• What is the partition key in the examples? 

why is this super important here?

23

CREATE TABLE movie_view_counts_by_day ( 
movie_id  BIGINT, 
ts  TIMESTAMP, 
view_count COUNTER, 
PRIMARY KEY (movie_id, ts) 

);

We need to read a range of data and 
we want to do it in a single (read) call



Discussion (2)
• Are there any performance differences between 

using “round by hour” vs “round by day”?

24



Discussion (2)
• Are there any performance differences between 

using “round by hour” vs “round by day”?

• The number of events should be the same 

(unless you allow a daily event to be saved several times during 
the day)


• The number of counters can be X24


• Query / client runtime


• storage   

25



Discussion (2)
• Are there any performance differences between 

using “round by hour” vs “round by day”?

• The number of events should be the same 

(unless you allow a daily event to be saved several times during 
the day)


• The number of counters can be X24


• Query / client runtime


• storage   

26

It can be either negligible or crucial - 
depends on the exact use case



Cassandra advanced topics
• Counters


• Collections 

• UDTs


• Batches


• Lightweight transactions


• Tunable consistency


• Deletes & tombstones
27



Cassandra collections
• Multi value columns  

Set / List / Map


• Designed for relatively small amount of data


• Retrieved all together 
no paging / indexes


• Type is fixed for all elements 


• Cannot nest (*only FROZEN) 
more on FROZEN later

28



SET
• Unique, unordered, returned sorted

29

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

UPDATE movies 
SET genres = {“Action”, “Comedy”, “Teen”} 
WHERE  id = 123

UPDATE movies 
SET genres = genres + {“Teen”} 
WHERE  id = 123

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

UPDATE movies 
SET genres = genres - {“Teen”} 
WHERE  id = 123



SET
• In practice

30

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

123
genres:Action genres:Comedy title

Bad Boys

There are no values for the set columns



SET
• In practice

31

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

123
genres:Action genres:Comedy title

Bad Boys

UPDATE movies 
SET genres = genres + {“Teen”} 
WHERE  id = 123



SET
• In practice

32

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

123
genres:Action genres:Comedy title

Bad Boys

UPDATE movies 
SET genres = genres + {“Teen”} 
WHERE  id = 123

123
genres:Action genres:Comedy genres:Teen title

Bad Boys



LIST
• Duplicated, ordered


• (may) requires read before write

33

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
cast  LIST<text> 
PRIMARY KEY (movie_id) 

);

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Will Smith”, “Martin Lawrence”}) 

UPDATE movies 
SET cast[1] = {“Martin Lawrence”} 
WHERE  id = 123

DELETE cast[1] FROM movies WHERE id = 123

UPDATE movies 
SET cast = cast - {“Martin Lawrence”} 
WHERE  id = 123

// all matching elements 
NOT thread-safe 



LIST
• In practice

34

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
cast  LIST<text> 
PRIMARY KEY (movie_id) 

);

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Will Smith”, “Martin Lawrence”}) 

123
cast:u82d00…dkj

Will Smith

cast:u82d01…dkj

Martin Lawrence

title

Bad Boys

List values are column values
Column name is added with unique String 

based on the list order



LIST
• In practice

35

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
cast  LIST<text> 
PRIMARY KEY (movie_id) 

);

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Will Smith”, “Martin Lawrence”}) 

123
cast:u82d00…dkj

Will Smith

cast:u82d01…dkj

Martin Lawrence

title

Bad Boys

List values are column values
Column name is added with unique String 

based on the list order

Again - list may required read before write. 
Do NOT use unless you know what you are doing



MAP
• Key-Value pair, ordered by keys

36

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
cast  MAP<BIGINT, text> 
PRIMARY KEY (movie_id) 

);

INSERT INTO movies 
VALUES (123, “Bad Boys”, {44: “Will Smith”, 45: “Martin Lawrence”}) 

UPDATE movies 
SET cast = cast - {44} 
WHERE  id = 123



MAP
• In practice

37

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
cast  MAP<BIGINT, text> 
PRIMARY KEY (movie_id) 

);

INSERT INTO movies 
VALUES (123, “Bad Boys”, {44: “Will Smith”, 45: “Martin Lawrence”}) 

123
cast:44

Will Smith

cast:45

Martin Lawrence

title

Bad Boys



Cassandra advanced topics
• Counters


• Collections


• UDTs 

• Batches


• Lightweight transactions


• Tunable consistency


• Deletes & tombstones
38



User defined types
• Attach multiple data fields to a single column


• Any type of field is valid (UDT, Collections)


• Use with FROZEN 
new versions can support non frozen UDT without collections

39

CREATE TYPE address ( 
country  TEXT, 
city  TEXT, 
street TEXT, 
phones SET<TEXT> 

);

CREATE TYPE full_name ( 
first_name  TEXT, 
last_name TEXT 

);

frozen == blob for Cassandra 
—> all data needs to be set at once



User defined types - example

40

CREATE TABLE users ( 
user_id  BIGINT, 
name  FROZEN <full_name>, 
age  INT 

);

CREATE TYPE full_name ( 
first_name  TEXT, 
last_name TEXT 

);

INSERT INTO user 
VALUES (123, {first_name: “Lebron”, last_name: “James”}, 36)



User defined types - notes
• You can love them or hate them 


• Useful with collections

41

CREATE TYPE address ( 
country  TEXT, 
city  TEXT, 
street TEXT, 
phones SET<TEXT> 

);

CREATE TABLE users ( 
user_id  BIGINT, 
addresses SET<FROZEN <ADDRESS>> 

);



Cassandra advanced topics
• Counters


• Collections


• UDTs


• Batches 

• Lightweight transactions


• Tunable consistency


• Deletes & tombstones
42



Important note
• Batches in Cassandra are different from relational 

databases


• TLDR; they are “half” relational transactions 
batch is isolate and atomic in a single partition

43



In relational databases
• Batches & Transactions are collections of commands 

(Insert/Update/Delete) sent together to the server 


• Batch 
- NO rollback / ACID  
- used to increase performance by reducing server calls


• Transaction 
- full ACID 

44



In relational databases

45

“DRIVER START BATCH” 
INSERT INTO users VALUES(“Rubi”); 
... 
INSERT INTO users VALUES(“Tova”); 

“DRIVER END BATCH”

START TRANSACTION 
INSERT INTO flights VALUES(“Rubi”, “TLV-NY”); 
... 
INSERT INTO hotels VALUES(“Rubi”, “Hilton-NY”); 

COMMIT

If “Tova” fails, “Rubi” is still 
added

No ACID

ACID

If “Hilton-NY” fails, the flight is 
NOT added

Atomicity 
Consistency 
Isolation 
Durability



Cassandra Batch
• Executes several commands


• If statement apply to the same partition: 
atomic & isolated

46

BEGIN BATCH 
INSERT INTO users_by_country VALUES(“Israel”,123, “Rubi”); 
... 
INSERT INTO users_by_country VALUES(“Israel”,123, “Tova”); 

APPLY BATCH

If “Tova” Fails, “Rubi” will not 
be added

Isolation - can NOT read “Rubi” until “Tova” is added

Same partition 



Cassandra Batch - performance?
• Each batch is sent to a single coordinator (node), 

logged and then executed 


• What happens in each scenario?


•  
 

•

47

1000+ 
nodes

BEGIN BATCH 
INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

users
user_id K
name



Cassandra Batch - performance?
• Each batch is send to a single coordinator (node), 

logged and then executed 


• What happens in each scenario?


•  
 

•

48

1000+ 
nodes

BEGIN BATCH 
INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

users
user_id K
name

Contact the node of the first 
partition key (123) and log the 

batch. 

Then that node contacts the node 
of partition 456



Cassandra Batch - performance?
• Each batch is send to a single coordinator (node), 

logged and then executed 


• What happens in each scenario?


•  
 

•

49

1000+ 
nodes

BEGIN BATCH 
INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

users
user_id K
name

Each insert calls directly the 
relevant node



Cassandra Batch - performance?
• Each batch is send to a single coordinator (node), 

logged and then executed 


• What happens in each scenario?


•  
 

•

50

1000+ 
nodes

BEGIN BATCH 
INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

APPLY BATCH

INSERT INTO users VALUES(123, “Rubi”); 
... 
INSERT INTO users VALUES(456, “Tova”); 

users
user_id K
name

Batches in Cassandra almost always do not help 
with performance 

Use it only if you need single partition isolation



Cassandra advanced topics
• Counters


• Collections


• UDTs


• Batches


• Lightweight transactions 

• Tunable consistency


• Deletes & tombstones
51



Lightweight Transactions
• Checks a condition prior to Insert/Update/Delete


• Expensive (more than a read and write)


• An “ACID Transaction” at the partition level

52



Lightweight Transactions - examples 

53

INSERT INTO movies  
VALUES(3,“American Pie”,1999,96) 
IF NOT EXISTS

movies
id K

title

year

duration

UPDATE movies  
SET duration = 96 
WHERE id = 3 
IF year = 1999



Cassandra advanced topics
• Counters


• Collections


• UDTs


• Batches


• Lightweight transactions


• Tunable consistency 

• Deletes & tombstones
54



Recap - CAP
• Consistency 

Every read receives the most recent write or an error


• Availability 
Every request receives a (non-error) response, 
without the guarantee that it contains the most recent write


• Partition tolerance 
The system continues to operate despite an arbitrary number of 
messages being dropped (or delayed) by the network

55

Consistency

Availability Partition 
tolerance

CA

AP

CP
X



Recap - CAP
• TLDR; If a node is down/unreachable 


• Cancel the operation (CP)


• Return result with (maybe) inconsistency (AP)

56

Consistency

Availability Partition 
tolerance

CA

AP

CP
X



Tunable consistency in Cassandra
• When performing read/write, consistency level can 

be specified 
Consistency level = # of nodes (replicas) needs to response 
 

• ONE/TWO/QUORUM/LOCAL_QUORUM/ALL/…

57



Tunable consistency in Cassandra

58

// within cqlsh session 
CONSISTENCY QUORUM  
INSERT INTO movies VALUES(3,“American Pie”,1999,96) 



When to use which level?
• A function of application logic & resources (money)

59



When to use which level?
• A function of application logic & resources (money)


• For example:

• A “like” event should get ONE or QUORUM?

60

1000+ 
nodes



When to use which level?
• A function of application logic & resources (money)


• For example:

• A “like” event should get ONE or QUORUM?


• A “buy” event should get ONE or QUORUM?

61

1000+ 
nodes



When to use which level?
• A function of application logic & resources (money)


• For example:

• A “like” event should get ONE or QUORUM?


• A “buy” event should get ONE or QUORUM?


• # of available rooms in a hotel should get ONE or QURUM?

62

1000+ 
nodes



When to use which level?
• A function of application logic & resources (money)


• For example:

• A “like” event should get ONE or QUORUM?


• A “buy” event should get ONE or QUORUM?


• # of available rooms in a hotel should get ONE or QURUM?


• Critical for performance on large scale
63

1000+ 
nodes



Cassandra advanced topics
• Counters


• Collections


• UDTs


• Batches


• Lightweight transactions


• Tunable consistency


• Deletes & tombstones
64



Deletes in a distributed system
• A hard problem. 

Why?

65



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• A client sends a delete command

66

1

2

3

client 
Delete from…



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• A client sends a delete command

67

1

2

3

client 
Delete from…

ack

X - network issue 



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• A client sends a delete command


• Client receives success (2 out of 3)

68

1

2

3

client 
Delete from…

ack

X - network issue ack



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• The client now sends a select command

69

1

2

3

client 
Select from…



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• The client now sends a select command

70

1

2

3

client 
Select from…

ack

X - network issue 



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• The client now sends a select command


• Conflict! Node 3 contains data, Node 1 does not 
 

71

1

2

3

client 
Select from…

ack

X - network issue 



Delete example - distributed system
• 3 nodes, replication factor = 3, consistency=quorum


• The client now sends a select command


• Conflict! Node 3 contains data, Node 1 does not 
 
—> Cassandra will return “zombie” / “ghost” data

72

1

2

3

client 
Select from…

ack

X - network issue 



Cassandra solution (simplified)
• When deleting, create a “delete entry" - tombstone


• Solves 2 problems:


• the “ambiguous read”


• immutable storage (SSTables)


• Before reads - Cassandra checks for relevant tombstones 

73



Tomestones
• Created when


• DELETE


• Setting TTLs


• Inserting NULLs (avoid!)


• Inserting data into a collection 
when inserting the entire collection

74

Why?



Tombstone & SET

75

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

123
genres:Action genres:Comedy title

Bad Boys



Tombstone & SET

76

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

123
genres:Action genres:Comedy title

Bad Boys

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Teen”, “Drama”}) 



Tombstone & SET

77

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Action”, “Comedy”}) 

CREATE TABLE movies ( 
movie_id  BIGINT, 
title TEXT, 
genres SET<text> 
PRIMARY KEY (movie_id) 

);

123
genres:Action genres:Comedy title

Bad Boys

INSERT INTO movies 
VALUES (123, “Bad Boys”, {“Teen”, “Drama”}) 

As data is stored in separate 
columns, we need to delete all 

previous existing columns



Tomestones - how long do we keep them?
Any ideas?

78



Tomestones - how long do we keep them?
Tombstones can be removed once:


• Creation time is longer than gc_grace_seconds 
default is 10 days


• A repair should run at least once every gc_grace_seconds  
repairs assures consistency among all nodes


• All sstables that could contain the relevant data are 
involved in the compaction

79



Tomestones - problem
• Tombstones had performance hit for queries


• Warning in 1k tombstones per partition query


• Error in 100k tombstones per partition query

80



Tomestones - problem - SOLUTION
• It all comes down to the data model


• Adjusting and gc_grace_seconds and Repairs 
if you are doing this —> probably problems in production :(


• More on this later… 
modeling multi tenants for example

81


