
Proprietary + Confidential

Introduction to Google
BigQuery

Nir Carasso
Customer Engineer , Google Cloud, EMEA

Proprietary + Confidential

Agenda

● Data Analytics Markets & Macro trends

● Intro to BigQuery

● BigQuery Engine | Schema | Storage

● BigQuery Performance Optimization

Proprietary + ConfidentialProprietary + Confidential

Data Analytics

Proprietary + Confidential

Proprietary + Confidential

Goodbye 2022

● Slowing economy -> reduce IT
spend, except cloud computing

● Higher tech stack complexity
while talent is hard to find

● Global regulations are increasing
data-> security | privacy |
governance

Macro Trends

● User Experience

● Managed Services

● Open Standards

● Decentralization (Data Products)

● Semantic /Metric Layer

● Data Ops/Observability | Fin Ops

Market Pressures…

Proprietary + Confidential

Proprietary + Confidential

Data delivery models

Data Warehouse Data Fabric Data Mesh

Data Visualization Data Sharing

Lakehouse

Data Lake

Proprietary + Confidential

Proprietary + Confidential

Market & Trends Data models evolution

• Budget

• Simple & Managed

• Metadata management

(regulation)

• Semantic /Metric Layer
• Decentralization
• Open Standards

Proprietary + ConfidentialProprietary + Confidential

BigQuery Introduction

Proprietary + Confidential

Proprietary + Confidential

What is BigQuery?

BigQuery is Google Cloud Platform’s data warehouse solution to
perform high speed, scalable and interactive analysis on data.

● It sits under the Big Data product category for Google Cloud Platform and
is useful for storing petabytes of data as well as performing analysis on that
data.

● It is built on the principle that double the amount of data queried should not
take double the time to return results.

● BigQuery data can also be used in other tools like Google’s Data Studio,
Data Lab and others.

Proprietary + Confidential

Proprietary + Confidential

BigQuery: 100% serverless data warehouse

Fully Managed and Serverless

Google Cloud’s Enterprise Data

Warehouse for Analytics

Petabyte-Scale and Fast

Convenience of Standard SQL

Encrypted, Durable and Highly

Available

Proprietary + Confidential

Proprietary + Confidential

OLTP OLAP

OnLine Transaction Processing
OnLine Analytical

Processing

Data nature Operational Historical

Focus Updating/Retrieve Reporting

Queries Simple Complex

Query Latency Low High

Google Cloud Platform
Products Cloud

SQL
Cloud

Datastore
BigQueryBigTable

OLAP vs OLTP: Which fits my use case?

Cloud
Spanner

Proprietary + Confidential

Proprietary + Confidential

BigQuery | Architecture
Decoupled storage and compute for maximum flexibility

SQL:2011

Compliant

Streaming

Ingest

Free Bulk

Loading

REST API

Client Libraries

In 7 languages

Web UI, CLI

Petabit Network

BigQuery High-Available Cluster
Compute (Dremel)

Replicated, Distributed
Storage

(99.9999999999% durability)

Distributed Memory
Shuffle Tier

ODBC/JDBC

Colossus Storage Custom CPUs

Gmail, YouTube, AdWords,

Machine Learning, Search

Proprietary + Confidential

Proprietary + Confidential

BigQuery Structure

Tables

Each dataset has tables that
contain the data following a
schema that describes the field
names, types and other useful
information that we can query.

3

Data Set

A Project has datasets that
allow us to organize and

control the access to the
tables that are contained in

them.

2

Project

Main Containers in BigQuery are
called Projects, they store billing
information and list of users
with access.

1

Proprietary + Confidential

Proprietary + Confidential

Project X

project.dataset.table

What are some
reasons to
structure your
information into:
● Datasets?
● Projects?
● Tables?

Dataset A

Table 1

Table 2

Dataset B

Table 1

Table 2

Project Y

Dataset C

Table 1

Table 2

Dataset D

Table 1

Table 2

BigQuery Service

BigQuery organizes data tables into units called datasets

BigQuery Structure

Proprietary + Confidential

Proprietary + Confidential

BigQuery Resource Model

Tables
•Collections of columns and rows stored in managed
storage. These could be natively managed or
federated.
•Defined by a schema with strongly-typed columns of
values
•Allow access control at Table level , Column level and
Row Level.

Views
•Virtual tables defined by a SQL query
•Allow access control at View level

https://cloud.google.com/bigquery/docs/table-access-controls-intro
https://cloud.google.com/bigquery/docs/column-level-security-intro
https://cloud.google.com/bigquery/docs/row-level-security-intro

Proprietary + Confidential

Proprietary + Confidential

BigQuery Interface Walkthrough (video)

• Project | dataset | tables

• Search bar

• Query history (personal, project)

• Save queries (personal, project)

• Job history (personal, project, cloud dataflow)

• Transfer and Schedule queries

• BI Engine

http://drive.google.com/file/d/1_8lgxsqNiQLzNVkzX5vusyeHQufNeDtr/view

Proprietary + ConfidentialProprietary + Confidential

BigQuery Query Engine

Proprietary + Confidential

Proprietary + Confidential

Separation of Storage and Compute

The Power of BigQuery

Master

ShardShard

ShardShard

ShardShard

Jupiter

Distributed Storage

(Colossus)

Borg
Cluster Management System

Dremel Query Engine
● Number of Shards based on query needs
● ANSI 2011 Standard SQL

Jupiter
● High Speed, petabit network

Colossus
● Distributed, columnar storage

Groupings of Compute Resources

Proprietary + Confidential

Proprietary + Confidential

Query Syntax

Comment
SELECT
Statement
Columns

FROM TABLES

WHERE CLAUSES

ORDER BY
GROUP BY
LIMIT

Alias

Proprietary + Confidential

Proprietary + Confidential

MapReduce

Proprietary + Confidential

Proprietary + Confidential

Query Processing Example

#StandardSQL
SELECT state, year, COUNT(*) AS count_babies
FROM `bigquery-public-data.samples.natality`
WHERE year >= 1980 and year < 1990
GROUP BY state, year
ORDER BY 3 desc
LIMIT 10

Count of babies by
state, year

Proprietary + Confidential

Proprietary + Confidential

WRITE: count_babies, state, year BY HASH(state, year)
AGGREGATE: count(*) AS count_babies, GROUP BY state,
year
READ: state, year WHERE year >= 1980 AND year < 1990

~137M rows in

~35K rows output (after Stage 1)

WRITE: count_babies, state, year
AGGREGATE: SUM_OF_COUNTS(count_babies)
READ: count_babies, state, year FROM stage 1

60 rows output (after Stage 2)

WRITE: count_babies, state, year
LIMIT: 10
READ: count_babies, state, year FROM stage 2

10 rows (output)

Stage 1

Stage 3

Stage 2

Master

Shard Shard

Distributed storage
(Colossus)

Network (Jupiter)

Shard Shard

Query Processing Example

Proprietary + Confidential

BigQuery remote memory shuffle

Shuffle

Worker

Worker

GROUP BY
state COUNT(*)

SELECT
state

Worker

Worker

Worker

ORDER BY year...
SHUFFLE

Distributed
Storage

Faster performance for complex queries

Join and aggregate more data

Better scalability

Proprietary + Confidential

Proprietary + Confidential

Some BigQuery Stats

10.5 Trillion

2.1 petabytes

62 petabytes

4.5 million rows/sec

Largest query (rows)

Largest query (data size)

Largest storage customer

Peak ingestion rate

Proprietary + Confidential

Proprietary + Confidential

BQ Storage API
High-performance BigQuery Storage API for Dataflow and
Dataproc, break down the Data Warehouse storage wall.

External Storage Federation
Easily integrate with data lakes and open formats on GCP and on
other clouds with BigQuery Omni

External Database Federation

Query your Cloud SQL and Cloud Spanner instances directly from
BigQuery, without moving data around.

BigQuery: Interoperability

Proprietary + ConfidentialProprietary + Confidential

BigQuery Storage

Proprietary + Confidential

Proprietary + Confidential

3

1 21 3

Table 1 Table 2 Table 3

Zone A Zone B Zone C

Region

● Tables are stored in
optimized columnar format

● Each table is encrypted on
disk

● Storage is durable & each
table is replicated across
datacenters

2

Table 4

4 4

Customer A Customer B

BigQuery | Managed storage
Durable and persistent storage with automatic backup

Proprietary + Confidential

Proprietary + Confidential

Record Oriented Storage
Supports transactional updates

Relational Database BigQuery Storage

Each column is seperate, compressed,
encrypted file, replicated three times. No
indexes, keys or partitions required; for
immutable massive datasets.

BigQuery Storage is columnar

BigQuery Structure

Proprietary + Confidential

Proprietary + Confidential

Row based
Storage

● Read less data faster
● Skip unused columns
● Column compression > Row Compression
● Supports vectorized columnar processing

Proprietary + Confidential

Proprietary + Confidential

BigQuery
Capacitor
Files

Proprietary + Confidential

Proprietary + Confidential

Dictionary

SELECT play_count FROM songs WHERE name LIKE “%Sun%”;

Storage Engine: Capacitor

0

1

1

0

2

1

LIKE “%Sun%”

LIKE “%Sun%”

LIKE “%Sun%”

0

1

2

F

F

T

Data Emit

{7833}

Filter Lookup

xc*

c8!

8ec

7h!

a7c

c-%

Hey Jude

My Michelle

Here Comes the Sun

Proprietary + Confidential

Proprietary + Confidential

Capacitor - Columnar storage

● Allows skipping of unused files

● Provides fast lookup of selected columns

● Provides better compression

● Builds an approximation model to select compression techniques like RLE, dictionary encoding, Bit-

Vector encoding, Frame of Reference encoding, etc. to minimize the impact of non-deterministic

behavior of data

● Stores and regularly updates statistics about data columns

To read more: bit.ly/inside-capacitor

http://bit.ly/inside-capacitor

Proprietary + Confidential

Proprietary + Confidential

BigQuery
Partitions &
Clustering

Proprietary + Confidential

Proprietary + Confidential

BigQuery handles reliability automatically
so you don’t have to

No virtual machines to manage and

maintain BigQuery’s availability
1

Automatic replication (minimum of 2 times)

in multiple regions/zones at any time
2

Auto failover incases of zonal outages3

Maintains 99.99% uptime SLAs to meet

your business objectives
4

Table changes in the last 7 days are

maintained, allowing for time travel
5

Data is encrypted in transit and at rest

by default
6

Proprietary + Confidential

Proprietary + Confidential

Connections to

Google Cloud

require TLS

Data is chunked and each

chunk is encrypted with its

own data encryption key

Data encryption keys

(DEKs) are wrapped using

a key encryption key (KEK)

Encrypted chunks and wrapped

encryption keys are distributed across

Google’s storage infrastructure.

Encryption by default in transit and at rest

Proprietary + Confidential

Proprietary + Confidential

● Jobs start in the PENDING state.

○ Can transition to either RUNNING or DONE (due to

timeout).

○ Most jobs immediately enter the RUNNING state.

● Jobs defer their RUNNING transition when:

○ BATCH priority: always defer at least 1 minute, longer if

awaiting quota or the individual server is nearing

capacity.

○ INTERACTIVE priority: never.

● The Job server will periodically re-evaluate the deferment, with

exponential backoff.

Query Overview | Job Queueing

Job Server

Job Server

Job Server

Region

Job

Metadata

Proprietary + Confidential

Proprietary + Confidential

What is a slot?

A unit of compute within BigQuery:

● Encapsulates CPU, memory, disk
● In reality, a slice of a core (~0.5 CPU and ~0.5 GB of RAM)
● Dynamically sized based on query demands

Query Stages Tasks Slots
consists of consists of executes on

Proprietary + ConfidentialProprietary + Confidential

BigQuery Schema

Proprietary + Confidential

Proprietary + Confidential

Some things to keep in mind

BigQuery supports nested and

repeated columns

Storage is cheap!

BigQuery performance and query costs are

based on the amount of data scanned

Filtering on a clustered column may greatly

reduce the amount of data scanned

For each query, BigQuery executes a full-

partition column scan

BigQuery does not use or support indexes,

only partitioning and clustering

Proprietary + Confidential

Proprietary + Confidential

Schema design in a nutshell

Optimize to solve actual problems, not expected

ones (performance gets better over time)

When join time become excessively long, you want

to use nested repeated fields

Denormalization is NOT a requirement but

can speed up slow analytical queries by

reducing the amount of data to shuffle

Proprietary + Confidential

Proprietary + Confidential

Table performance / cost features

Partitioning

Filtering storage before query execution begins to reduce

costs. Reduces a full table scan to the partitions

specified. Single column, lower cardinality

(e.g. thousands of partitions).

● Time Partitioning (Pseudocolumn)

● Time Partitioning (User Date/Time Column)

● Integer Range Partitioning

Clustering

Storage optimization within columnar

segments to improve filtering and record

colocation. Clustering performance and

cost savings can't be assessed before query

begins. Prioritized clustering of up to 4

columns, on more diverse types (but no

nested columns).

Proprietary + Confidential

Proprietary + Confidential

BigQuery provides
Automatic re-clustering

free

maintenance-free

autonomous

Doesn’t consume your query resources

Requires no setup or maintenance

Automatically happens in the background

Proprietary + ConfidentialProprietary + Confidential

BigQuery Performance Optimization

Proprietary + Confidential

Proprietary + Confidential

How do you optimize queries

➔ Less work → Faster Query

➔ What is work for a query?

◆ I/O — How many bytes did you read?
◆ Shuffle — How many bytes did you pass to the next stage?

● Grouping — How many bytes do you pass to each group?

◆ Materialization — How many bytes did you write?
◆ CPU work — User-defined functions (UDFs), functions

Proprietary + Confidential

Proprietary + Confidential

Don’t project unnecessary columns

● On how many columns are you operating?

● Excess columns incur wasted I/O and materialization

Don’t SELECT * unless you need every field

Proprietary + Confidential

Proprietary + Confidential

Filter early and often using WHERE clauses

● On how many rows (or partitions) are you operating?

● Excess rows incur “waste” similar to excess columns

Proprietary + Confidential

Proprietary + Confidential

Do the biggest joins first

● Joins — In what order are you merging data?

● Guideline — Biggest, Smallest, Decreasing Size Thereafter

● Avoid self-join if you can, since it squares the number of rows processed

Proprietary + Confidential

Proprietary + Confidential

Table Partitioning

● Time-partitioned tables are a cost-effective way to manage data

● Easier to write queries spanning time periods

● When you create tables with time-based partitions, BigQuery automatically loads

data in correct partition

○ Declare the table as partitioned at creation time using this flag: --

time_partitioning_type

○ To create partitioned table with expiration time for data, using this flag: --

time_partitioning_expiration

Proprietary + Confidential

Proprietary + Confidential

Example - Time Partitioning

Proprietary + ConfidentialProprietary + Confidential

BigQuery Specialities

Proprietary + Confidential

Proprietary + Confidential

Analyze GIS data
in BigQuery

BigQuery GIS
Accurate spatial analyses with Geography
data type over GeoJSON and WKT formats

Support for core GIS functions –
measurements, transforms, constructors,
etc. – using familiar SQL

Proprietary + Confidential

Proprietary + Confidential

WKT

GeoJSON

WKB

GIS Formats

Point

Linestring

Polygon

Multi-Polygon

Collections

Proprietary + Confidential

Proprietary + Confidential

Through SQL and within BigQuery

Leverage BigQuery’s processing power to build a model

Auto-tuned learning rate

Auto-split of data into training and test

Null imputation

Standardization of numeric features

One-hot encoding of strings

Class imbalance handling

Behind the scenes - BigQuery ML

Proprietary + Confidential

Proprietary + Confidential

BigQuery ML for predictive analytics

1

2

3

Execute ML initiatives without
moving data from BigQuery

Iterate on models in SQL in BigQuery
to increase development speed

Automate common ML tasks,
and hyperparameter tuning

Proprietary + Confidential

Proprietary + Confidential

Supported
models

Classification

Logistic regression

DNN classifier (Beta)

XGBoost classifier (Beta)

Regression

Linear regression

DNN regressor (Beta)

XGBoost classifier (Beta)

Other models

k-means clustering

Recommendation: Matrix

factorization (Beta)

Model import

Import TensorFlow and

XGBoost models for

prediction (Beta)

Proprietary + Confidential

Proprietary + Confidential

Time travel

Read data from any time within the last 7 days.

SELECT x, y
FROM dataset.table
FOR SYSTEM_TIME AS OF
TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 3 DAY)

Proprietary + ConfidentialProprietary + Confidential

Thank You!

