
Dr. Rubi Boim

CAP Theorem
Big Data Systems

Motivation
We just learn it is “not trivial” to “go distributed”

• Data fragmentation

• Data distribution

• Data replication

• Things get (much) more complicated

• CAP Theorem - “Everything comes with a price”
2

Some terms

3

Consistency

Availability Partition
tolerance

CA

AP

CP
X

TLDR: You can only satisfy 2 out of 3

in a distributed database

NOT the same as ACID

Asynchronous network model
• Messages can be (randomly) delayed

• Can’t distinguish between failed nodes and delayed
messages in a finite amount of time

4

node1 node2

node1 node2

delay

X

Consistency
• Every read receives the most recent write or an error 

5

Consistency
• Every read receives the most recent write or an error 

6

node1

node2 node3

node4

a = 20

a = 20

10:00: a = 20

a = 20

* example for inconsistency

Consistency
• Every read receives the most recent write or an error 

7

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

a = 20 10 sync

* example for inconsistency

X

Consistency
• Every read receives the most recent write or an error 

8

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)
 a = 20 10

* example for inconsistency

X

Consistency
• Every read receives the most recent write or an error 

9

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)

10:03: read a (value = 20)

a = 20 10

* example for inconsistency

X

Consistency warning
Do not get confused with consistency from ACID

• Atomicity

• Consistency 
correctness / referential integrity (foreign key)

• Isolation

• Durability

10

Availability
• All requests (read/write) receives a non-error response  

for reads there is no guarantee that it contains the most recent write

11

Availability
• All requests (read/write) receives a non-error response  

for reads there is no guarantee that it contains the most recent write

12

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)
 a = 20 10
X

* this is valid for high availability  
 (without consistency)

Availability
• All requests (read/write) receives a non-error response  

for reads there is no guarantee that it contains the most recent write

13

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)

10:03: read a (value = 20)

a = 20 10
X

* this is valid for high availability  
 (without consistency)

X

X

Partition tolerance
• The system continues to operate despite an arbitrary

number of messages being dropped (or delayed) by
the network

14

Partition tolerance
• The system continues to operate despite an arbitrary

number of messages being dropped (or delayed) by
the network

15

node1

node2 node3

node4

X
X* success call event if some servers are down

CAP Theorem
• For distributed data, it is impossible to satisfy more

than two out of the three

• Consistency 
Every read receives the most recent write or an error

• Availability 
Every request receives a (non-error) response, 
without the guarantee that it contains the most recent write

• Partition tolerance 
The system continues to operate despite an arbitrary number of messages being
dropped (or delayed) by the network

16

Consistency

Availability Partition
tolerance

CA

AP

CP
X

CAP Theorem - in practice
No distributed system is safe from network failures. 
 —> we need to choose between CP and AP

In practice - If a node is down/unreachable we can:

• cancel the operation (CP)

• Return result with (maybe) inconsistency (AP)

17

CAP Theorem - why is it important?
• No free lunch for distributed systems

• This will be (among other stuff) a differentiator
between different types of distributed databases and
NoSQL systems 
(not just how to model data, but how to write)

18

A bit more on Consistency

19

Consistency types
• Weak / Eventual consistency 

If we stop updating, the system will eventually be consistent

• Strong consistency 
consistent on all calls 
 

20

Consistency types - different views
• From developer / application side 

how they observe updates? 
how it affects the application logic?

• From server side 
how can we detect / force consistency? 
 

21

Consistency types - different views
• From developer / application side 

how they observe updates? 
how it affects the application logic?

• From server side 
how can we detect / force consistency? 
 

22

Application side consistency

23

DNS Server

Which consistency type
do we need?

Application side consistency

24

DNS Server

Weak / Eventual consistency

Application side consistency

25

Bank

Which consistency type
do we need?

Application side consistency

26

Bank

Strong consistency

Application side consistency

27

Bank

Strong consistencyNote that some “logic” is
usually “eventual”

Now with the CAP

28

BankDNS Server

Should we prefer consistency or availability support?

Weak / Eventual consistency Strong consistency

Consistency types - different views
• From developer / application side 

how they observe updates? 
how it affects the application logic?

• From server side 
how can we detect / force consistency? 
 

29

Discussion

30

Server side consistency
Discussion - How do we know if we satisfy consistency? 
if one, two or more (how much?) are down

31

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)

10:03: read a (value = 20)

a = 20 10
X

Server side consistency
• N 	 #nodes that store replicas of the data

• W 	 #replicas that need to acknowledge the receipt 	
	 of the update before the update completes

• R	 #replicas that are contacted for a read

32

If W+R > N then strong consistency is guaranteed

If W+R <=N then weak / eventual consistency

Server side consistency - example 1
• Master + read replica RDBMS

33

master read
replica

Server side consistency - example 1
• Master + read replica RDBMS

34

master read
replica

t0: update

Server side consistency - example 1
• Master + read replica RDBMS

35

master read
replica

t0: update
t1: sync

Server side consistency - example 1
• Master + read replica RDBMS

36

master read
replica

t0: update
t1: sync

t2: ack

Server side consistency - example 1
• Master + read replica RDBMS

37

master read
replica

t0: update
t1: sync

t2: ackt3: success

Server side consistency - example 1
• Master + read replica RDBMS

38

master read
replica

t0: update
t1: sync

t2: ackt3: success

reads

Server side consistency - example 1
• Master + read replica RDBMS

39

master read
replica

t0: update
t1: sync

t2: ackt3: success

reads

W (2) + R (1) > N (2)

strong consistency

Server side consistency - example 1
• Master + read replica RDBMS

40

master read
replica

t0: update
t1: sync

t2: ackt3: success

reads

W (2) + R (1) > N (2)

strong consistency What happens if the

read replica fails?

Server side consistency - example 1
• Master + read replica RDBMS

41

master read
replica

t0: update

Server side consistency - example 1
• Master + read replica RDBMS

42

master read
replica

t0: update
t1: sync

t2: ackX

Server side consistency - example 1
• Master + read replica RDBMS

43

master read
replica

t0: update
t1: sync

t2: ackXt3: success

Assume we do not need
to get ack from the read
replica to return success

Server side consistency - example 1
• Master + read replica RDBMS

44

master read
replica

t0: update
t1: sync

t2: ackXt3: success

Assume we do not need
to get ack from the read
replica to return success

reads

Server side consistency - example 1
• Master + read replica RDBMS

45

master read
replica

t0: update
t1: sync

t2: ackXt3: success

Assume we do not need
to get ack from the read
replica to return success

reads

W (1) + R (1) <= N (2)

weak / eventual consistency

Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously

46

node1

node2 node3

node4

a = 20

a = 20

10:00: a = 20

a = 20

* example for availability

Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously

47

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

a = 20 10 sync
X

* example for availability

Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously

48

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)
 a = 20 10
X

* example for availability

Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously

49

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)

10:03: read a (value = 20)

a = 20 10
X

* example for availability

Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously

50

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update a = 10

10:02: read a (value = 10)

10:03: read a (value = 20)

a = 20 10

* example for availability

X

W (1) + R (1) <= N (3)

weak / eventual consistency

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

51

node1

node2 node3

node4

a = 20

a = 20

10:00: a = 20

a = 20

* example for consistency

N=3

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

52

node1

node2 node3

node4

a = 20

a = 20

10:00: a = 20

a = 20

* example for consistency

What is quorum ack?

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

53

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

a = 20 10 sync
X

N=3, W=2, R=2

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

54

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

10:02: read node4 (a=20)

a = 20 10
X

N=3, W=2, R=2

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

55

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

10:02: read node4 (a=20)

—> read node2 (a=10)

a = 20 10
X

N=3, W=2, R=2

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

56

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

10:02: read node4 (a=20)

—> read node2 (a=10)

—> there is NO quorum

a = 20 10
X

N=3, W=2, R=2

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

57

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

10:02: read node4 (a=20)

—> read node2 (a=10)

—> there is NO quorum

—> in node1 a=10

a = 20 10
X

N=3, W=2, R=2

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

58

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

10:02: read node4 (a=20)

—> read node2 (a=10)

—> there is NO quorum

—> in node1 a=10

—> there is a quorum, return a=10

a = 20 10
X

N=3, W=2, R=2

Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

59

node1

node2 node3

node4

a = 20 10

a = 20

10:00: a = 20

10:01: update node1 a = 10

—> node2 returned ack

node4 is not responding

—> return success

10:02: read node4 (a=20)

—> read node2 (a=10)

—> there is NO quorum

—> in node1 a=10

—> there is a quorum, return a=10

a = 20 10
X

W (2) + R (2) > N (3)

strong consistency

N=3, W=2, R=2

Server side consistency - example 4

• Distributed database, multi data center 

60

Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter

61

node1

node2 node3

W (2) + R (2) > N (3)

strong consistency

within a local data center

US

data center

Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter

62

node1

node2 node3

W (2) + R (2) > N (3)

strong consistency

within a local data center

US

data center

async

Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter

63

node1

node2 node3

W (2) + R (2) > N (3)

strong consistency

within a local data center

node51

node52 node53

US

data center

Europe

data center

W (1) + R (1) <= N (3)

eventual consistency

across data centers

async

Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter

64

node1

node2 node3

update

sync sync

W (2) + R (2) > N (3)

strong consistency

within a local data center

X

node51

node52 node53

US

data center

Europe

data center

async

W (1) + R (1) <= N (3)

eventual consistency

across data centers

Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter

65

node1

node2 node3

update

return success after (all):

 - finish saving locally (node1)

 - ack from node2 or node3

 - ack from a single node in Europe sync sync

W (2) + R (2) > N (3)

strong consistency

within a local data center

X

node51

node52 node53

US

data center

Europe

data center

async

W (1) + R (1) <= N (3)

eventual consistency

across data centers

Summary - CAP Theorem
• No distributed system is safe from network failures. 

 —> we need to choose between CP and AP

66

Summary - CAP Theorem
• No distributed system is safe from network failures. 

 —> we need to choose between CP and AP

• If a node is down/unreachable we can:

• cancel the operation (CP)

• Return result with (maybe) inconsistency (AP)

• Multi data center adds more options
67

