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Motivation
We just learn it is “not trivial” to “go distributed”


• Data fragmentation


• Data distribution


• Data replication


• Things get (much) more complicated 


• CAP Theorem - “Everything comes with a price”
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Some terms
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Consistency

Availability Partition 
tolerance

CA

AP

CP
X

TLDR: You can only satisfy 2 out of 3 

in a distributed database

NOT the same as ACID



Asynchronous network model
• Messages can be (randomly) delayed 


• Can’t distinguish between failed nodes and delayed 
messages in a finite amount of time

4

node1 node2

node1 node2

delay

X



Consistency
• Every read receives the most recent write or an error 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Consistency
• Every read receives the most recent write or an error 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Consistency
• Every read receives the most recent write or an error 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Consistency
• Every read receives the most recent write or an error 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Consistency
• Every read receives the most recent write or an error 

9

node1

node2 node3

node4

a = 20  10

a = 20

10:00: a = 20


10:01: update  a = 10


10:02: read a (value = 10)


10:03: read a (value = 20)

a = 20  10

* example for inconsistency

X



Consistency warning
Do not get confused with consistency from ACID


• Atomicity 


• Consistency 
correctness / referential integrity (foreign key)


• Isolation


• Durability
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Availability
• All requests (read/write) receives a non-error response  

for reads there is no guarantee that it contains the most recent write
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Availability
• All requests (read/write) receives a non-error response  

for reads there is no guarantee that it contains the most recent write
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* this is valid for high availability  
  (without consistency)



Availability
• All requests (read/write) receives a non-error response  

for reads there is no guarantee that it contains the most recent write
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* this is valid for high availability  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Partition tolerance
• The system continues to operate despite an arbitrary 

number of messages being dropped (or delayed) by 
the network
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Partition tolerance
• The system continues to operate despite an arbitrary 

number of messages being dropped (or delayed) by 
the network
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node4

X
X* success call event if some servers are down



CAP Theorem
• For distributed data, it is impossible to satisfy more 

than two out of the three


• Consistency 
Every read receives the most recent write or an error


• Availability 
Every request receives a (non-error) response, 
without the guarantee that it contains the most recent write


• Partition tolerance 
The system continues to operate despite an arbitrary number of messages being 
dropped (or delayed) by the network
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CAP Theorem - in practice
No distributed system is safe from network failures. 
     —> we need to choose between CP and AP


In practice - If a node is down/unreachable we can:


• cancel the operation (CP)


• Return result with (maybe) inconsistency (AP)
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CAP Theorem - why is it important?
• No free lunch for distributed systems


• This will be (among other stuff) a differentiator 
between different types of distributed databases and 
NoSQL systems 
(not just how to model data, but how to write)
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A bit more on Consistency 
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Consistency types
• Weak / Eventual consistency 

If we stop updating, the system will eventually be consistent


• Strong consistency 
consistent on all calls 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Consistency types - different views
• From developer / application side 

how they observe updates? 
how it affects the application logic?


• From server side 
how can we detect / force consistency? 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Consistency types - different views
• From developer / application side 

how they observe updates? 
how it affects the application logic?


• From server side 
how can we detect / force consistency? 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Application side consistency
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DNS Server

Which consistency type 
do we need?



Application side consistency
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DNS Server

Weak / Eventual consistency



Application side consistency
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Bank

Which consistency type 
do we need?



Application side consistency
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Bank

Strong consistency



Application side consistency
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Bank

Strong consistencyNote that some “logic” is 
usually “eventual”



Now with the CAP
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BankDNS Server

Should we prefer consistency or availability support?

Weak / Eventual consistency Strong consistency



Consistency types - different views
• From developer / application side 

how they observe updates? 
how it affects the application logic?


• From server side 
how can we detect / force consistency? 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Discussion
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Server side consistency
Discussion - How do we know if we satisfy consistency? 
if one, two or more (how much?) are down
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Server side consistency
• N 	 #nodes that store replicas of the data


• W 	 #replicas that need to acknowledge the receipt 	
	 of the update before the update completes


• R	 #replicas that are contacted for a read
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If W+R > N then strong consistency is guaranteed

If W+R <=N then weak / eventual consistency



Server side consistency - example 1
• Master + read replica RDBMS
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master read 
replica



Server side consistency - example 1
• Master + read replica RDBMS
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master read 
replica

t0: update



Server side consistency - example 1
• Master + read replica RDBMS
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t1: sync



Server side consistency - example 1
• Master + read replica RDBMS

36

master read 
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t0: update
t1: sync

t2: ack



Server side consistency - example 1
• Master + read replica RDBMS
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master read 
replica

t0: update
t1: sync

t2: ackt3: success



Server side consistency - example 1
• Master + read replica RDBMS
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t2: ackt3: success

reads



Server side consistency - example 1
• Master + read replica RDBMS
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W (2) + R (1) > N (2)

strong consistency



Server side consistency - example 1
• Master + read replica RDBMS
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t0: update
t1: sync

t2: ackt3: success

reads

W (2) + R (1) > N (2)

strong consistency What happens if the 

read replica fails?



Server side consistency - example 1
• Master + read replica RDBMS
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Server side consistency - example 1
• Master + read replica RDBMS
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Server side consistency - example 1
• Master + read replica RDBMS
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Assume we do not need 
to get ack from the read 
replica to return success



Server side consistency - example 1
• Master + read replica RDBMS
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Server side consistency - example 1
• Master + read replica RDBMS
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Assume we do not need 
to get ack from the read 
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reads

W (1) + R (1) <= N (2)

weak / eventual consistency



Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously 
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* example for availability



Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously 
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Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously 

48

node1

node2 node3

node4

a = 20  10

a = 20

10:00: a = 20


10:01: update  a = 10


10:02: read a (value = 10)
 a = 20  10
X

* example for availability



Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously 
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Server side consistency - example 2
• Distributed database, set to performance (availability) 

updates other nodes asynchronously 
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W (1) + R (1) <= N (3)

weak / eventual consistency



Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack
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Server side consistency - example 3
• Distributed database, set to consistency 

updates & reads needs quorum ack

59

node1

node2 node3

node4

a = 20  10

a = 20

10:00: a = 20


10:01: update node1  a = 10

—> node2 returned ack


node4 is not responding

—> return success


10:02: read node4 (a=20)

—> read node2 (a=10)

—> there is NO quorum

—> in node1 a=10

—> there is a quorum, return a=10

a = 20  10
X

W (2) + R (2) > N (3)

strong consistency

N=3, W=2, R=2



Server side consistency - example 4

• Distributed database, multi data center 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Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter
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Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter
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Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter
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Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter
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Server side consistency - example 4

• Distributed database, mixed consistency 
updates needs quorum ack in the same datacenter 
	 	 single ack from remote datacenter
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Summary - CAP Theorem
• No distributed system is safe from network failures. 

     —> we need to choose between CP and AP

66



Summary - CAP Theorem
• No distributed system is safe from network failures. 

     —> we need to choose between CP and AP


• If a node is down/unreachable we can:


• cancel the operation (CP)


• Return result with (maybe) inconsistency (AP)


• Multi data center adds more options
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