
Dr. Rubi Boim

Cassandra - CQL
Big Data Systems

2

3

4

~650 likes per seconds avg in 24 hours

5

~650 likes per seconds avg in 24 hours

10m likes in first 39 minutes!
~4300 likes per seconds avg

6

~650 likes per seconds avg in 24 hours

10m likes in first 39 minutes!
~4300 likes per seconds avg

7

~650 likes per seconds avg in 24 hours

10m likes in first 39 minutes!
~4300 likes per seconds avg

9m likes in first 24 hours
~100 likes per seconds avg

8

~650 likes per seconds avg in 24 hours9m likes in first 24 hours
~100 likes per seconds avg

So why did Instagram crashed? 10m likes in first 39 minutes!
~4300 likes per seconds avg

9

Cassandra CQL
• Terminology

• Keyspaces

• Tables

• Data types

• DDL / DML 

10

Spoiler - most slides will be on SELECT

Terminology (Cassandra)

11

Keyspace

Table

Partition

Row

similar to Schema

Column

defines the node on
which data is stored

Partition key

Clustering
column

Primary key

defines the order or
rows in a partition

Keyspace
• High level container - AKA “schemas” from rDB

• replication factor strategy
• “SimpleStrategy”: entire cluster

• “NetworkTopologyStrategy”: different settings for each DS

12

Keyspace

13

CREATE KEYSPACE BigDataCourse WITH REPLICATION = {
 'class' :'NetworkTopologyStrategy',
 ‘israel' : 3 , // Datacenter 1
 'us' : 2 // Datacenter 2
};

CREATE KEYSPACE BigDataCourse WITH REPLICATION = {
 'class' : 'SimpleStrategy',
 ‘replication_factor': 1
};

Use & Describe
• USE: switch between key spaces in CQL

• DESCRIBE: display detailed information in CQL 
(see manual for more options)

14

USE bigdatacourse

DESCRIBE KEYSPACES/KEYSPACE/TABLES/TABLE/...

JAVA:
CassandraConnectionPool connectionPool.setKeyspace(“bigdatacourse”)

CREATE TABLE

15

CREATE TABLE students (
column1 TEXT,
column2 INT,
column3 UUID,
PRIMARY KEY (column1)

);

CREATE TABLE [IF NOT EXISTS] [keyspace_name.]table_name (
 column_definition [, ...]
 PRIMARY KEY (column_name [, column_name ...])
[WITH table_options
 | CLUSTERING ORDER BY (clustering_column_name order])
 | ID = 'table_hash_tag'
 | COMPACT STORAGE]

Data types (basic)
• TEXT	 	 utf8

• INT	 	 signed 32bits

• BIGINT		 signed 64bits

• TIMESTAMP 	 64bits

• FLOAT 	 	 32bits floating point

• DOUBLE 		 64bits floating point

• DECIMAL 	 variable-precision decimal

• UUID	 	 universally unique identifier, 128bits

• TIMEUUID	 sortable UUID, embedded timestamp

• BLOB	 	 arbitrary bytes

16

Data types (basic)
• TEXT	 	 utf8

• INT	 	 signed 32bits

• BIGINT		 signed 64bits

• TIMESTAMP 	 64bits

• FLOAT 	 	 32bits floating point

• DOUBLE 		 64bits floating point

• DECIMAL 	 variable-precision decimal

• UUID universally unique identifier, 128bits

• TIMEUUID sortable UUID, embedded timestamp

• BLOB	 	 arbitrary bytes

17

Unique across all nodes,
regardless of the number of nodes

Note on generating unique IDs
• Not trivial for distributed systems

• UUID / TIMEUUID are great

• Downside - requires 128bit 
what’s the problem with java primitives? 

18

Note on generating unique IDs
• Not trivial for distributed systems

• UUID / TIMEUUID are great

• Downside - requires 128bit 
what’s the problem with java primitives? 

19

Max primitive is 64bit (long)

More data types
• COUNTER
• LIST
• SET
• MAP

• More on these later…

20

SELECT

• “Limited” compared to RDBMS 
sum / avg / min / max or only supported on new versions 
no joins / having / union…

21

SELECT * FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse
WHERE column1 = “1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

SELECT

• “Limited” compared to RDBMS 
sum / avg / min / max or only supported on new versions 
no joins / having / union…

22

SELECT * FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse
WHERE column1 = “1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

ANTI PATTERN
Can be very slow and expensive - when?

SELECT

• “Limited” compared to RDBMS 
sum / avg / min / max or only supported on new versions 
no joins / having / union…

23

SELECT * FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse

SELECT column1,column2 FROM BigDataCourse
WHERE column1 = “1234” LIMIT 100

SELECT count(*) FROM BigDataCourse

ANTI PATTERN
Can be very slow and expensive - when?

Even if counting a single row, it can be
expensive (on a really big wide row)

SELECT - partitions and keys

• TLDR; provide the partition key to the query

24

SELECT * FROM users
WHERE user_id = “1234”

users

user_id K

name

birth_year

…
1000+
nodes

SELECT - partitions and keys

• What happens if no partition is given?

25

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

SELECT - partitions and keys

• What happens if no partition is given?

26

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

We need to contact all servers
(as all partitions are valid)

SELECT - partitions and keys

• What happens if no partition is given?

27

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

We need to contact all servers
(as all partitions are valid)

This is valid!
Lets see some examples

SELECT - partitions and keys

• What happens if no partition is given?

28

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 100k users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

SELECT - partitions and keys

• What happens if no partition is given?

29

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 100k users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

YES - why?

SELECT - partitions and keys

• What happens if no partition is given?

30

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 100k users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

YES - why?
There are 100k partitions which are distributed on 10k nodes

SELECT - partitions and keys

• What happens if no partition is given?

31

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 10 users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

SELECT - partitions and keys

• What happens if no partition is given?

32

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 10 users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

NO - why?

SELECT - partitions and keys

• What happens if no partition is given?

33

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 10 users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

NO - why?
There are 10 partitions which are distributed on 10k nodes.
We will initiate 9990 unnecessary calls

SELECT - partitions and keys

• What happens if no partition is given?

34

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 10 users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

NO - why?
There are 10 partitions which are distributed on 10k nodes.
We will initiate 9990 unnecessary calls

The right way for this scenario is to
create a single partition for these

10 users, then read 1 partition

SELECT - partitions and keys

• What happens if no partition is given?

35

SELECT * FROM users users

user_id K

name

birth_year

…
1000+
nodes

Each user “creates” a partition (user_id is partition_key)

Assume there are 10k nodes in the cluster and no replication
 - If there are 10 users, would the query be optimal?
 (that is, we would not check unnecessary nodes/partitions)

NO - why?
The there are 10 partitions which are distributed on 10k
nodes. We will initiate 9990 unnecessary calls

SELECT * from <TABLE> - Summary

Although this is allowed - this is in general anti pattern
Use with caution

The right way for this scenario is to
create a single partition for these

10 users, then read 1 partition

SELECT - partitions and keys

• Try a different model

36

SELECT * FROM users
WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

Note
K is the partition key (NOT the key)
🔻C is the clustering column,
Together both are the key

SELECT - partitions and keys

• Try a different model

37

SELECT * FROM users
WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

Reading the users from Israel is fast

SELECT - partitions and keys

• Try a different model

38

SELECT * FROM users
WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

What happen if the country is India?

SELECT - partitions and keys

• Try a different model

39

SELECT * FROM users
WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

What happen if the country is India?

How can you solve this issue?

SELECT - partitions and keys

• Try a different model

40

SELECT * FROM users
WHERE country = “israel”

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

What happen if the country is India?

We can add “buckets” - more on this laterHow can you solve this issue?

SELECT - partitions and keys

• What happens now?

41

SELECT * FROM users
WHERE country = “israel”
AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

SELECT - partitions and keys

• What happens now?

42

SELECT * FROM users
WHERE country = “israel”
AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodesError - why?

SELECT - partitions and keys

• What happens now?

43

SELECT * FROM users
WHERE country = “israel”
AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodesError - why?

Cassandra will need to read the entire partition.
If there are 1m users, and only 10k were born in 1982,

there would be an unnecessary read/filter of 990k users

SELECT - partitions and keys

• What happens now?

44

SELECT * FROM users
WHERE country = “israel”
AND birth_year = 1982
ALLOW FILTERING

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

With “ALLOW FILTERING” Cassandra will approve the query
(ANTI PATTERN)

SELECT - partitions and keys

• What happens now?

45

SELECT * FROM users
WHERE country = “israel”
AND birth_year = 1982
ALLOW FILTERING

users

country K

user_id 🔻C

name

birth_year

…
1000+
nodes

With “ALLOW FILTERING” Cassandra will approve the query
(ANTI PATTERN)

How can you support the query without
“ALLOW FILTERING”?

SELECT - partitions and keys

• Solved with denormalization

• (we will talk about correct modeling later)
46

SELECT * FROM users_by_birth_year
WHERE country = “israel”
AND birth_year = 1982

users

country K

user_id 🔻C

name

birth_year

…

1000+
nodes

users_by_birth_year

country K

birth_year 🔻C

user_id 🔻C

name

…

SELECT - partitions and keys

• And what about this case?

47

SELECT * FROM users
WHERE city = “tel aviv”

1000+
nodes

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - partitions and keys

• And what about this case?

48

SELECT * FROM users
WHERE city = “tel aviv”

1000+
nodes

Error - why?

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - partitions and keys

• And what about this case?

49

SELECT * FROM users
WHERE city = “tel aviv”

1000+
nodes

Error - why?

Cassandra will need to contact all nodes and to check
if such partition exists

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - partitions and keys

• And what about this case?

50

SELECT * FROM users
WHERE city = “tel aviv”
ALLOW FILTERING

1000+
nodes

With “ALLOW FILTERING” Cassandra will approve the query
(again - ANTI PATTERN)

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

SELECT - ALLOW FILTERING

• Almost always ANTI PATTERN

• We saw these use cases

• To “filter” columns in a single partition

• To “filter” partitions across nodes

51

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

1000+
nodes

SELECT - ALLOW FILTERING

• Almost always ANTI PATTERN

• We saw these use cases

• To “filter” columns in a single partition

• To “filter” partitions across nodes

• Can you think of another example?

52

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

1000+
nodes

SELECT - ALLOW FILTERING

• Almost always ANTI PATTERN

• We saw these use cases

• To “filter” columns in a single partition

• To “filter” partitions across nodes

• To “filter” columns across partitions

53

users

country K

city K

neighborhood K

user_id 🔻C

name

birth_year

1000+
nodes

SELECT * FROM users
WHERE name = “rubi boim"
ALLOW FILTERING

INSERT
• Primary key is obviously required

54

INSERT INTO BigDataCourse(column1,column2)
VALUES (123,”name”)

INSERT - IF NOT EXISTS
• Requires read before write!

• Use with caution

55

INSERT INTO BigDataCourse(column1,column2)
IF NOT EXSITS
VALUES (123,”name”)

INSERT - IF NOT EXISTS
• Requires read before write!

• Use with caution

56

INSERT INTO BigDataCourse(column1,column2)
IF NOT EXSITS
VALUES (123,”name”)

Note - writes are cheaper than reads. If there are not
too many writes, it is better to overwrite the same data

instead of using “if not exists”

INSERT - USING TTL
• Time To Live - allows for automatic expiration (delete) 

in seconds

57

INSERT INTO BigDataCourse(column1,column2)
VALUES (123,”name”)
USING TTL 86400 // 24 hours

INSERT - USING TTL
• Time To Live - allows for automatic expiration (delete) 

in seconds

58

INSERT INTO BigDataCourse(column1,column2)
VALUES (123,”name”)
USING TTL 86400 // 24 hours

Creates tombstones 
more on this later

UPDATE
• Primary key is obviously required

59

UPDATE BigDataCourse
SET column2 = “name”, column3 = “abc”
WHERE column1 = 123

DELETE
• Warning: 

DELETEs in distributed databases are NOT TRIVIAL

• In Cassandra in particular

• Deleted data is not removed immediately 
a tombstone is created

• More on this later

60

DELETE
• Delete data from a row

• Delete an entire row

61

users

country K

user_id 🔻C

name

birth_year

…

DELETE name FROM users
WHERE country = “israel”
AND user_id = “123”

DELETE FROM users
WHERE country = “israel”

Truncate
• Removes all SSTables holding data

• Use with care

• (Avoids tombstones)

62

TRUNCATE users

ALTER TABLE
• Add / drop / rename existing columns

• *change datatypes (with restrictions)

• Change table properties

• Can NOT alter PRIMARY KEY columns

• RTFM :)

63

ALTER TABLE [keyspace_name.] table_name
[ALTER column_name TYPE cql_type]
[ADD (column_definition_list)]
[DROP column_list | COMPACT STORAGE]
[RENAME column_name TO column_name]
[WITH table_properties];

