
Dr. Rubi Boim

Relational Modeling
Big Data Systems

Motivation (for this course)
• Data modeling is an important process when creating

a relational database

• Data modeling is the most important process when
creating a big data database

• Modeling for NoSQL is “different” than relational 
understanding relational modeling in crucial for wide column modeling

2

Relational vs NoSQL - design
• Relational 

focus on entities

• NoSQL 
focus on queries

3

Data Model App

App Model Data

Relational data modeling

4

Modeling is an Art
• Multiple ways to solve design problems

• Uncommon use case —> think out of the box

5

Relational Modeling - general steps
• Map conceptual entities, attributes and their relations

• Map primary and foreign keys

• Define data types

• Create tables
6

Relational Modeling - 10,000 foot view

7

Logical
data model

Physical
data model

entities & relations attributes and keys tables / types

Conceptual
data model

high level DB specific

Relational Modeling - 10,000 foot view

8

Logical
data model

Physical
data model

entities & relations attributes and keys tables / types

Conceptual
data model

high level DB specific

Conceptual data model
• Abstract view of the world 

server and database types are irrelevant

• Can be defined by non technical teams 
not really in reality…

• Entity / Relationship model (ER)

9

ER Model
• Entities

• Attributes

• Relations 
between entities 
 
 
 
 
 

10

actor

birthdate

Purchases

* There are more types like ISA (is a)

11

• Each entity must have a key

Entity

actor_id

name

actor

birthdate

Relation (between entities)

12

actor cast movie

13

• cardinality is the number of occurrences in one entity
which are associated to the number of occurrences
in another

Cardinality (of relation)

purchase purchase

many-one one-one

purchase

many-many

Many to Many

14

purchase

many-many

user product

Many to Many

Each user can buy many products 
(but each product only once)

15

purchase

many-many

user product

Many to One

16

makes

many-one

product company

Many to One

Each product is made by one company

17

makes

many-one

product company

One to One

18

belongs

one-one

country capital city

One to One

Each country has one capital city, and each capital
city belongs to one country

19

belongs

one-one

country capital city

Multi way relations

20

purchaseuser product

store

Multi way relations

Each user can buy many products in different stores 
(but user-store-product combination only once)

21

purchaseuser product

store

Multi way relations (another example)

22

viewuser movie

device

Multi way relations (another example)

Each user can view many movies on different devices 
(but user-movie-device combination only once)

23

viewuser movie

device

Multi way relations + cardinality

24

user movie

device

view

Multi way relations + cardinality

Each user can view many movies.  
If we know the user and the movie, we know the
device

25

user movie

device

view

Attributes for relations

26

viewuser movie

view_count

Attributes for relations

Each user can view many movies.  
For each “view” we also save the view_count 

27

viewuser movie

view_count

Roles in relations

28

friends_withuser

since_date

user

friend

Roles in relations

A user can be friends a different user

29

friends_withuser

since_date

user

friend

friends(user_id, friend_user_id, since_date)

From previous class:

Weak Entity
• When some of their keys comes from other entities

30

room_number

size

building_id

building

location

room within

Weak Entity
• When some of their keys comes from other entities

In this example, the key for room is building_id and room_number

31

room_number

size

building_id

building

location

room within

Example

32

Story time
Design an ER diagram for a video platform:

• A user is defined by user_id. We also save her name, birthdate and
city. For each city we save the city_id, name, population and country

• A video is defined by a video_id and we store its genre, release date
and title

• For each video we keep the actors that appears in it along with their
character name.

• The actors are defined by an actor_id along with their name

• For analytics, if a user views a video we save the most recent
viewing timestamp

33

34

birthdate

user_id

users

name
city population

city_id

country

population

city_id

country

35

birthdate

user_id

users

name
cityX X

XX

36

birthdate

user_id

users

name

37

name

birthdate

user_id

users

name

citiespopulation city_id

country

38

name

birthdate

user_id

users

name

population city_id

country

lives in

cities

39

name

videos
birthdate

user_id title video_id

users

name
genre

release_date

population city_id

country

lives in

cities

40

name

videos
birthdate

user_id title video_id

users

name
genre

actors

name

actor_id

release_date

population city_id

country

lives in

cities

41

name

cast

character

videos
birthdate

user_id title video_id

users

name
genre

actors

name

actor_id

release_date

population city_id

country

lives in

cities

42

videos

actors

birthdate

user_id
timestamp

title video_id

release_date

cast

name

actor_id

character

views

name
genre

users

population city_id

country

lives in

cities

name

Relational Modeling - 10,000 foot view

43

Logical
data model

Physical
data model

entities & relations attributes and keys tables / types

Conceptual
data model

high level DB specific

Logical data model
• From concept the “schema”

• Keys, foreign keys

• Data types are not yet defined

44

ER to Relational schema

• Entities

• Relations 
 
 
 
 
 

45

actor

Purchases

relation

relation

* not always

Entity to Relation

46

birthdate

user_id

users

name

Entity to Relation

47

users

user_id K

name

birthdate

birthdate

user_id

users

name

Relation to Relation (many-to-many)

48

birthdate

user_id

users

name

videos

title video_id

release_date

views
genre

Relation to Relation (many-to-many)

49

views

user_id K

video_id K

birthdate

user_id

users

name

videos

title video_id

release_date

views
genre

Keys are derived
from entities

Relation to Relation (+attributes)

50

birthdate

user_id

users

name

videos

timestamp title video_id

release_date

views
genre

Relation to Relation (+attributes)

51

views

user_id K

video_id K

timestamp

birthdate

user_id

users

name

videos

timestamp title video_id

release_date

views
genre

Additional
attributes

Relation to Relation (many-to-one)

52

birthdate

user_id

users

name

cities

country city_id

population

lives in

name

Relation to Relation (many-to-one)

53

users

user_id K

name

birthdate

city_id FK

No additional table is
required. We add to users

the key(s) of cities

birthdate

user_id

users

name

cities

country city_id

population

lives in

name

Sometimes FKs are omitted and
will be represented by arrows

(see next slides)

Relation to Relation (one-to-one)

54

country_id

countries

name

capital cities

country city_id

population

capital

name

Relation to Relation (one-to-one)

55

country_id

countries

name

capital cities

country city_id

population

capital

name

countries

country_id K

name

city_id FK, U
FK + Unique index

Weak Entity

room_number

size

building_id

building

location

room within

Weak Entity

57

room_number

size

building_id

building

location

room within

room

building_id K

room_number K

size

Example

58

59

videos

actors

birthdate

user_id
timestamp

title video_id

release_date

cast

name

actor_id

character

views

name
genre

users

population city_id

country

lives in

cities

name

60

videos

actors

timestamp
title video_id

release_date

cast

name

actor_id

character

views
genre

population city_id

country

lives in

cities

name

users

user_id K

name

birthdate

61

videos

actors

timestamp
title video_id

release_date

cast

name

actor_id

character

views
genre

lives in

users

user_id K

name

birthdate

cities

city_id K

name

population

country

62

videos

timestamp
title video_id

release_date

cast

character

views
genre

lives in

users

user_id K

name

birthdate

cities

city_id K

name

population

country

actors

actor_id K

name

63

timestamp

cast

character

views

lives in

users

user_id K

name

birthdate

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

64

timestamp

cast

character

views

users

user_id K

name

birthdate

city_id FK

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

65

timestamp

views

users

user_id K

name

birthdate

city_id FK

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

video_actor

video_id K

actor_id K

character

66

users

user_id K

name

birthdate

city_id FK

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

cast

video_id K

actor_id K

character

views

user_id K

video_id K

timestamp

67

users

user_id K

name

birthdate

city_id FK

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

cast

video_id K

actor_id K

character

views

user_id K

video_id K

timestamp

This is NOT the only FK on
the diagram

Logical
data model

Relational Modeling - 10,000 foot view

68

Physical
data model

entities & relations attributes and keys tables / types

Conceptual
data model

high level DB specific

Physical data model
• Finalize the schema

• Add types

• Generate create table statements

69

Example

70

71

users

user_id K

name

birthdate

city_id FK

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

cast

video_id K

actor_id K

character

views

user_id K

video_id K

timestamp

72

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id K

name

population

country

actors

actor_id K

name

videos

video_id K

title

release_date

genre

cast

video_id K

actor_id K

character

views

user_id K

video_id K

timestamp

73

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id K

name

videos

video_id K

title

release_date

genre

cast

video_id K

actor_id K

character

views

user_id K

video_id K

timestamp

74

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id K

title

release_date

genre

cast

video_id K

actor_id K

character

views

user_id K

video_id K

timestamp

75

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id K

title

release_date

genre

cast

video_id INT K

actor_id INT K

character VARCHAR

views

user_id K

video_id K

timestamp

76

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id INT K

title VARCHAR

release_date DATE

genre VARCHAR

cast

video_id INT K

actor_id INT K

character VARCHAR

views

user_id K

video_id K

timestamp

77

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id INT K

title VARCHAR

release_date DATE

genre VARCHAR

cast

video_id INT K

actor_id INT K

character VARCHAR

views

user_id INT K

video_id INT K

timestamp BIGINT

78

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id INT K

title VARCHAR

release_date DATE

genre VARCHAR

cast

video_id INT K

actor_id INT K

character VARCHAR

views

user_id INT K

video_id INT K

timestamp BIGINT

CREATE TABLE users(
 user_id INT NOT NULL,
 name VARCHAR(255),
 birthdate DATE,
 city_id INT,
 PRIMARY KEY(user_id),
 FOREIGN KEY(city_id)
 REFERENCES cities(id) ON DELETE REJECT
)

79

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id INT K

title VARCHAR

release_date DATE

genre VARCHAR

cast

video_id INT K

actor_id INT K

character VARCHAR

views

user_id INT K

video_id INT K

timestamp BIGINT

CREATE TABLE users(
 user_id INT NOT NULL,
 name VARCHAR(255),
 birthdate DATE,
 city_id INT,
 PRIMARY KEY(user_id),
 FOREIGN KEY(city_id)
 REFERENCES cities(id) ON DELETE REJECT
)

BUT cities does not yet exists…
What do you do?

80

users

user_id INT K

name VARCHAR

birthdate DATE

city_id INT FK

cities

city_id INT K

name VARCHAR

population INT

country VARCHAR

actors

actor_id INT K

name VARCHAR

videos

video_id INT K

title VARCHAR

release_date DATE

genre VARCHAR

cast

video_id INT K

actor_id INT K

character VARCHAR

views

user_id INT K

video_id INT K

timestamp BIGINT

CREATE TABLE users(
 user_id INT NOT NULL,
 name VARCHAR(255),
 birthdate DATE,
 city_id INT,
 PRIMARY KEY(user_id),
 FOREIGN KEY(city_id)
 REFERENCES cities(id) ON DELETE REJECT
)

BUT cities does not yet exists…
What do you do?

Simple - start with the tables without FKs…

Design examples

81

Example (1)
• What is the problem here? Solution?

82

birthdate datesuser

Example (1)

83

user birthdate

Example (2)
• What is the problem here? Solution?

84

purchase productuser

Example (2)

85

purchase productuser

invoicebuyer

quantity

Example (3)
• What is the problem here? Solution?

86

views videouser

Example (3)
• Option 1

87

views videouseruser

timestamp

Example (3)
• Option 1

88

views videouseruser

timestamp

views_option_1

user_id INT K

video_id INT K

timestamp BIGINT

Is this ok?

Example (3)
• Option 1

89

views videouseruser

timestamp

views_option_1

user_id INT K

video_id INT K

timestamp BIGINT K

Example (3)
• Option 2

90

view details videouseruser

timestamp

viewsview_id

Example (3)
• Option 2

91

view details videouseruser

timestamp

viewsview_id

views_option_2

view_id INT K

user_id INT FK

video_id INT FK

timestamp BIGINT

Example (3)
• Option 1 vs Option 2

92

views_option_2

view_id INT K

user_id INT FK

video_id INT FK

timestamp BIGINT

views_option_1

user_id INT K

video_id INT K

timestamp BIGINT K

Classic relational modeling -
“By the book”

“NoSQL style” -
Can improve performance on

large scale

Example (3)
• Option 1 vs Option 2

93

views_option_2

view_id INT K

user_id INT FK

video_id INT FK

timestamp BIGINT

views_option_1

user_id INT K

video_id INT K

timestamp BIGINT K

Classic relational modeling -
“By the book”

“NoSQL style” -
Can improve performance on

large scale

Open discussion

Assume the data is stored on disk by the order of the primary key

Can you think of a query that would be “optimized” for each option?

Example (3)
• Option 1 vs Option 2

94

views_option_2

view_id INT K

user_id INT FK

video_id INT FK

timestamp BIGINT

views_option_1

user_id INT K

video_id INT K

timestamp BIGINT K

Classic relational modeling -
“By the book”

“NoSQL style” -
Can improve performance on

large scale

Open discussion

Assume the data is stored on disk by the order of the primary key

Can you think of a query that would be “optimized” for each option?

Return all videos
viewed by a user

Return all videos
viewed last week

Example (3)
• Option 1 vs Option 2

95

views_option_2

view_id INT K

user_id INT FK

video_id INT FK

timestamp BIGINT

views_option_1

user_id INT K

video_id INT K

timestamp BIGINT K

Classic relational modeling -
“By the book”

“NoSQL style” -
Can improve performance on

large scale

Open discussion

Assume the data is stored on disk by the order of the primary key

Can you think of a query that would be “optimized” for each option?

Return all videos
viewed by a user

Return all videos
viewed last week

Modeling is an art…
There is not alway a clear right / wrong answer

Example (4)
• Add the option to save previous changes to the

name attribute

birthdate

user_id

name

users

Example (4)
• Add the option to save previous changes to the

name attribute

birthdate

user_id

name

users

timestamp

is
name

user-prev-
names

Example (4)
• Add the option to save previous changes to the

name attribute

birthdate

user_id

name

users is

users

user_id K

name

birthdate

user_names

user_id K

timestamp K

name

name

user-prev-
names

timestamp

Example (5)
• Add the option for a “premium” user

videos
birthdate

user_id
timestamp

title video_id

release_date

views

name
genre

users

Example (5)
• Add the option for a “premium” user

videos
birthdate

user_id
timestamp

title video_id

release_date

views

name
genre

users

is_premium

Example (5)
• Add the option for a “premium” user or “gold” user

videos
birthdate

user_id
timestamp

title video_id

release_date

views

name
genre

users

is_premium

• Add the option for a “premium” user or “gold” user

Example (5)

videos
birthdate

user_id
timestamp

title video_id

release_date

views

name
genre

users

is_premium is_gold

• Add the option for a “premium” user or “gold” user

Example (5)

videos
birthdate

user_id
timestamp

title video_id

release_date

views

name
genre

users

is_premium is_gold

Is this ok?

• Add the option for a “premium” user or “gold” user

Example (5)

videos
birthdate

user_id
timestamp

title video_id

release_date

views

name
genre

users

user_types

user_type

user_type_id title

Example (6)
• Add the option to “download” videos

videos
birthdate

user_id
timestamp

title video_id

views

name
genre

users

Example (6)
• Add the option to “download” videos

birthdate

user_id
timestamp

title video_id

views

name
genre

users

timestamp
downloads

videos

Example (6)
• Add also the option for “wish list”

birthdate

user_id
timestamp

title video_id

views

name
genre

users

timestamp
downloads

videos

Example (6)
• Add also the option for “wish list”

birthdate

user_id
timestamp

title video_id

views

name
genre

users

timestamp
downloads

videos

wishlist
timestamp

Example (6)
• Add also the option for “wish list”

birthdate

user_id
timestamp

title video_id

views

name
genre

users

timestamp
downloads

videos

wishlist
timestamp

Is this ok?

Example (6)
• Add also the option for “wish list”

birthdate

user_id
timestamp

title video_id

views

name
genre

users

timestamp
downloads

videos

wishlist
timestamp

Is this ok?

Yes, but can you think
about another way?

• Convert to “events"

Example (6)

birthdate

user_id title video_id

name
genre

users videos

• Convert to “events"

Example (6)

birthdate

user_id title video_id

name
genre

users videos

event_type

event_type

title

view / download /
wishlist…

• Convert to “events"

Example (6)

birthdate

user_id
timestamp

title video_id

events

name
genre

users videos

event_type

event_type

title

view / download /
wishlist…

• How would the tables look like for both versions?

Example (6)

Example (6)
• How would the tables look like for both versions?

birthdate

user_id
timestamp

title video_id

views

name
genre

users

timestamp
downloads

videos

wishlist
timestamp

• How would the tables look like for both versions?

Example (6)

timestamp

views

timestamp
downloads

wishlist
timestamp

users

user_id K

name

birthdate

videos

video_id K

title

genre

• How would the tables look like for both versions?

Example (6)

timestamp
downloads

wishlist
timestamp

users

user_id K

name

birthdate

videos

video_id K

title

genre

views

user_id K

video_id K

timestamp

• How would the tables look like for both versions?

Example (6)

wishlist
timestamp

users

user_id K

name

birthdate

videos

video_id K

title

genre

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

• How would the tables look like for both versions?

Example (6)

users

user_id K

name

birthdate

videos

video_id K

title

genre

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

• How would the tables look like for both versions?

Example (6)

birthdate

user_id
timestamp

title video_id

events

name
genre

users videos

event_type

event_type

title

• How would the tables look like for both versions?

Example (6)

timestamp

events

event_type

event_type

title

users

user_id K

name

birthdate

videos

video_id K

title

genre

• How would the tables look like for both versions?

Example (6)

timestamp

events

users

user_id K

name

birthdate

videos

video_id K

title

genre

event_type

event_type_id K

title

• How would the tables look like for both versions?

Example (6)

users

user_id K

name

birthdate

videos

video_id K

title

genre

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

If we might have new types of events in the future

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

If we might have new types of events in the future

This is better. Why?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

If we might have new types of events in the future

This is better. Why?

New types do not require
schema changes

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Not all dev teams have access to “views” data

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Not all dev teams have access to “views” data

This is better. Why?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Not all dev teams have access to “views” data

This is better. Why?

DBMS can restrict access
to specific tables

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data.
How many queries we need for each version?

How much each query “cost”?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data.
How many queries we need for each version?

How much each query “cost”?

Cost in RDBMS is “disk page read”

Please forget about the “cost” and assume
each table access takes the same time

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data.
How many queries we need for each version?

How much each query “cost”?

1 query 1 query

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data
AND the downloads

How many queries we need for each version?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data
AND the downloads

How many queries we need for each version?

1 query 2 queries

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data
AND the downloads AND the views

How many queries we need for each version?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data
AND the downloads AND the views

How many queries we need for each version?

1 query 3 queries

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume most of our queries requires only the wishlist data
AND the downloads AND the views

How many queries we need for each version?

1 query 3 queries

This is actually not true - it depends on how the data is stored on disk.
We will talk about this over and over in the next lessons :)

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume events have different distributions.
For each 10 views there is 1 download and 1 wishlist events

Would you change your previous answers?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume events have different distributions.
For each 10 views there is 1 download and 1 wishlist events

Would you change your previous answers?

Assume we have 1b views, 100m downloads and
100m wishlist events. Would it be more efficient to
store them in a single table or partition them to 3

tables?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume events have different distributions.
For each 10 views there is 1 download and 1 wishlist events

Would you change your previous answers?

Doesn’t really matter because a table with 1b rows
will probably “break” the RDBMS
(Unless you are Facebook or Amazon)

Assume we have 1b views, 100m downloads and
100m wishlist events. Would it be more efficient to
store them in a single table or partition them to 3

tables?

• So which version is better?

Example (6)

event_type

event_type_id K

title

events

user_id K

video_id K

event_type_id K

timestamp

views

user_id K

video_id K

timestamp

downloads

user_id K

video_id K

timestamp

wishlist

user_id K

video_id K

timestamp

vs

Assume events have different distributions.
For each 10 views there is 1 download and 1 wishlist events

Would you change your previous answers?

Doesn’t really matter because a table with 1b rows
will probably “break” the RDBMS
(Unless you are Facebook or Amazon)

Assume we have 1b views, 100m downloads and
100m wishlist events. Would it be more efficient to
store them in a single table or partition them to 3

tables?

Don’t worry - this is the “Big Data System” course, not “Database Systems”.
We will solve this soon :)

