
Dr. Rubi Boim

Bigtable
Big Data Systems

Bigtable
• Google’s (internal) main database

• In 2015 Google also offered it as a product

2

Motivation (for this course)
• First encounter with wide column database

• Understand basic usage / data model 
we will go much deeper later in the course (NoSQL data modeling)  

• Understand Bigtable building blocks

• Crucial for success in large scale systems

• Many are used also by Cassandra

3

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
4

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
5

Bigtable
• Create by Google in 2004-2006 

paper: Bigtable: A Distributed Storage System for Structured Data

• The techniques developed here are used in many
other systems 
not just by Google - HBase, Cassandra…

• One of (if not the) first NoSQL database

6

History
• Google was on hyper growth on 2004

• Web indexes for search engine took too long to build

• A lot of growing projects 
Google Search (Personalized) 
Google Earth 
Google Finance 
Google Analytics 
…  
(later on also used in gmail, maps, YouTube and many many more)

7

Initial requirements
Remember this was in 2004…

• Access / mange petabytes of data in real time

• Variable data size 
URLs, documents, satellite imagery…

• Wide applicability

• Highly scalable

• Highly available

• Highly compressible
8

Initial requirements - Data model
• Big table does NOT supports full relational model

• Simple custom API instead

9

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
10

Data model - TLDR
“A Bigtable is a sparse, distributed, persistent
multi-dimensional sorted map.”

• The map is indexed by

• Row key

• Column key

• Timestamp 
 

11

<row:string, column:string, timestamp:int64> —> string

array of bytes

versions

Data model

12

<row:string, column:string, timestamp:int64> —> string

columncolumn column

israel#236
location:

Tel Aviv

name:last

boim

name:first

rubi
Eilat
Tel Aviv

row

versions

Data model

13

<row:string, column:string, timestamp:int64> —> string

columncolumn column

israel#236
Tel Avivboimrubi

Eilat
Tel Aviv

row

can grow…
—> wide column

location:name:lastname:first

Data model

14

<row:string, column:string, timestamp:int64> —> string

columncolumn column

versions

israel#236
Tel Avivboimrubi

Eilat
Tel Aviv

row

israel#242
name:first

tova

row can be sparse

location:name:lastname:first

Data model

15

<row:string, column:string, timestamp:int64> —> string

columncolumn column

versions

israel#236
location:

Tel Aviv

name:last

boim

name:first

rubi
Eilat
Tel Aviv

row

israel#242
location:

Haifa

name:last

milo

name:first

tova
Tel Aviv
Jerusalem

row
pref:fav-color

red

Data model

16

<row:string, column:string, timestamp:int64> —> string

columncolumn column

versions

israel#236
location:

Tel Aviv

name:last

boim

name:first

rubi
Eilat
Tel Aviv

row

israel#242
location:

Haifa

name:last

milo

name:first

tova
Tel Aviv
Jerusalem

row
pref:fav-color

red

sorted !!!

Data model - design
• Discussion - is this model optimal?

• What will happen if we switch the order?

17

<row:string, column:string, timestamp:int64> —> string

<row:string, timestamp:int64, column:string> —> string

Data model - design
• Discussion - is this model optimal?

• What will happen if we switch the order?

18

<row:string, column:string, timestamp:int64> —> string

<row:string, timestamp:int64, column:string> —> string

The version will apply to all columns

Data model - Google’s requirements
• Bigtable is build by Google FOR Google…

• Optimal == Optimal for Google’s requirements

19

Data model - Webtable example
Used by Google’s search index

20

ROW
reverse url address

COLUMN
crawled website content

according to different times

COLUMN
Name: external reference site
Value: the text from the link

Data model - Webtable example
Used by Google’s search index

21

ROW
reverse url address

COLUMN
crawled website content

according to different times

COLUMN
Name: external reference site
Value: the text from the link

why did they use
“reversed” urls?

Data model - Webtable example
Used by Google’s search index

22

ROW
reverse url address

COLUMN
crawled website content

according to different times

COLUMN
Name: external reference site
Value: the text from the link

why did they use
“reversed” urls?

data is stored on
column name

Rows
• Row key is up to 64KB (usually 10-100 bytes)

• Every read/write of data under a single row is atomic 
regardless to the number of columns read/written

• Stored by lexicographic order of row key 
—> read of short rows are efficient  
	 (can be on the same server)  
more on tablets later on

23

Rows - locality exploit

24

com.cnn.europe
“language:”

en

“contents:”

<html>…<html>…
<html>…

com.cnn.us
“language:”

en

“contents:”

<html>…<html>…
<html>…

com.cnn.www
“language:”

en

“contents:”

<html>…<html>…
<html>…

Model the data based on
how data is accessed

Rows - range
• (“short”) Rows can be read together/sequentially

25

tel-aviv#alona “…” “…”

tel-aviv#rubi “…” “…”

tel-aviv#tova “…” “…”

washington#deni “…” “…”

read users by city

Column Family / Columns
• Column family - group of column 

usually of the same time for compression

• Column name - family:qualifier

26

Column Family / Columns
• Column family - group of column 

usually of the same time for compression

• Column name - family:qualifier

27

Not too much (up to ~100) families

“unlimited” columns

Column Family / Columns
• Column family - group of column 

usually of the same time for compression

• Column name - family:qualifier

28

Access control per column family

Column Family / Columns
• Column family - group of column 

usually of the same time for compression

• Column name - family:qualifier

29

NOTE - we can store data in
the qualifier

Column Family / Columns
• Column family - group of column 

usually of the same type for compression

• Column name - family:qualifier

30

columns are sorted within each
column family

column families are NOT sorted
between other column families

Column Family / Columns

31

We use the URL as the qualifier

We use the URL as the qualifier

Timestamp
• Used to store different version of the same cell 

optional - current time is used if not passed

• For reads: 
 - return all versions 
 - return top k recent versions 
 - return all versions between timestamps

• Automatic “garbage collect” 
 - save only top k versions 
 - save only versions in the past 7 days

32

Bigtable API
• It is not SQL

• Basic management / data manipulation

• BUT also support querying range of rows 

• RTFM… ;-)
33

Bigtable API
• It is not SQL

• Basic management / data manipulation

• BUT also support querying range of rows 

• RTFM… ;-)
34

Speaking about API/SQL

35

https://xkcd.com/327/

https://xkcd.com/327/

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
36

Bigtable Building blocks
• How to manage rows across servers?

• How to manage servers?

• How to manage replication?

• How to manage actual data?

37

Tablet
• A range of rows is called a tablet

• Data is stored on special files - SSTables (later on this)

• A set of SSTables and a range comprise a tablet

38 38

Tablet - initialize
• When a table is created, there is 1 empty tablet

39 39

tablet

Tablet - initialize
• When a table is created, there is 1 empty tablet

40 40

tel-aviv#rubi “…” “…”

tel-aviv#tova “…” “…”
tablet

Tablet - Split
• When the table grows, the tablet is split

41

tel-aviv#alon “…” “…”

tel-aviv#deni “…” “…”

tel-aviv#elsa “…” “…”

tablet

Approximate size: 100-200MB
per tablet (default)

tel-aviv#rami “…” “…”

tel-aviv#rubi “…” “…”

tel-aviv#tova “…” “…”

Tablet - Split
• When the table grows, the tablet is split

42

tel-aviv#alon “…” “…”

tel-aviv#deni “…” “…”

tel-aviv#elsa “…” “…”

tablet

Approximate size: 100-200MB
per tablet (default)

tel-aviv#rami “…” “…”

tel-aviv#rubi “…” “…”

tel-aviv#tova “…” “…”

tablet

Tablet - components
• SSTable - the files that stored the tablet’s data 

more on this later

• A set of SSTables over a matching range  
comprise a tablet

43

tablet
SSTable files

start key: israel#a end key: israel#d

SSTable files … SSTable files SSTable files

Tablet - mapping
• Each tablet is assigned to a single node 

also known as “Bigtable node” / “tablet server”

• But what is a Bigtable node???

44

Bigtable design by components
• Bigtable is built on several different layers

• Management

• Processing

• Storage

45

Bigtable design by components
• Management - Master node (Cubby)

• Manage Bigtable nodes

• Manage Data mapping (tablets —> nodes)

• Processing - Bigtable nodes

• Manage read/writes (without actual storage)

• Storage - GFS / Colossus (Google File System)

• Manage actual storage files (SSTables)

46

“Single master distributed system”

Bigtable design by components
• Management - Master node (Cubby)

• Manage Bigtable nodes

• Manage Data mapping (tablets —> nodes)

• Processing - Bigtable nodes

• Manage read/writes (without actual storage)

• Storage - GFS / Colossus (Google File System)

• Manage actual storage files (SSTables)

47

In Dynamo / Cassandra
each node handles everything

This is a BIG difference

Components by layers

48

master

node1

Chubby

Bigtable nodes

GFS

tablet tablet tablettablet

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

node2

Components by layers

49

master

node1

Chubby

Bigtable nodes

GFS

tablet tablet tablettablet

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

node2

More than 1 server (more on this later)

Components by layers

50

master

node1

Chubby

Bigtable nodes

GFS

tablet tablet tablettablet

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

node2

The actual storage is on a different
layer from the tablets

Components by layers

51

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablettablet

node1node2 Each tablet is assigned to 1 node

Components by layers

52

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablettablet

node1node2 assume more data is added here

Components by layers

53

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablettablet

node1node2

Components by layers

54

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablettablet

node1node2

Components by layers

55

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablettablet

node1node2 tablet is too big - a split is needed

Components by layers

56

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablet tablettablet

node1node2

Components by layers

57

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablet tablettablet

node1node2

Components by layers

58

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablet tablettablet

node1node2
Processing is too slow - we need to

another node

Components by layers

59

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

tablet tablet tablet tablettablet

node3node1node2

Components by layers

60

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

node3

tablet tablet tablet tablettablet

node1node2

Components by layers

61

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

node3

tablet tablet tablet tablettablet

node1node2

note - we did NOT copy any
SSTable when we added a node.

We only changed the tablet
assignment

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
62

“Querying” a tablet
• On updates (insert/update/delete):

• Writes to a log (to redo on failures)

• Updates the memtable

• Once the memtable reaches a threshold

• it is saved to an immutable SSTable file

• A new empty one is initialized

• On read, we first search the value in the memtable,  
then (if not found) in all other SSTables by their order (last one first)

Minor compaction

Memtable: a sorted buffer in memory

Sorted String Table (SSTable)
• A file format

• Immutable

• Provides a persistent ordered map (key-value)

Sorted String Table (SSTable)

65

SSTable

file

index 64k data
block

64k data
block

64k data
block

64k data
block…

key offset

key offset

… …

… …

key value key value ... key value

Sorted String Table (SSTable)

66

SSTable

file

index 64k data
block

64k data
block

64k data
block

64k data
block…

key offset

key offset

… …

… …

key value key value ... key value

<row:string, column:string, timestamp:int64> —> string

Sorted String Table (SSTable)

67

SSTable

file

index 64k data
block

64k data
block

64k data
block

64k data
block…

key offset

key offset

… …

… …

key value key value ... key value

<row:string, column:string, timestamp:int64> —> string

In practice, there is a different more efficient format.
For example, for a long row with 10k columns, there is

no need to save the row key 10k times

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

68

memtable

node1

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

69

memtable

node1

Note - we keep track of the
“order” of the SSTables

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

70

memtable

node1

A timestamp should also be
here. For simplicity we ignore

for now

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

71

memtable

node1

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

72

memtable

node1

So what is Rubi’s mobile number?

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

73

memtable

node1

query: <“rubi”, “phone:mobile”>

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

74

memtable

node1

query: <“rubi”, “phone:mobile”>

We first check the memtable

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

75

memtable

node1

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

76

memtable

node1

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

77

memtable

node1

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

78

memtable

node1

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

79

memtable

node1

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

<“rubi”, “phone:mobile”> —> 123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

80

memtable

node1

<“rubi”, “phone:mobile”> —> 123

query: <“rubi”, “phone:mobile”>

123

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

81

memtable

node1

<“rubi”, “phone:mobile”> —> 123

Rubi updates his mobile number

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

82

memtable

node1

<“rubi”, “phone:mobile”> —> 123

Rubi updates his mobile number

<“rubi”, “phone:mobile”> —> 567

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

83

memtable

node1

<“rubi”, “phone:mobile”> —> 123

After some time the memtable is getting
too big and it is saved to a SSTable

<“rubi”, “phone:mobile”> —> 567

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

84

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

85

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

So what is Rubi’s mobile number?

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

86

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

87

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

88

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

89

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

If it is not there, we check in the
SSTables by the order they
were created (last one first)

Note - we do NOT need to read
more SSTables - we should return

the most recent value

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

90

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

567

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

91

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

92

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

Assuming we used timestamp=0,
these are not “two versions”! (- both are t=0)

One is simply “old value”

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

93

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

94

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

Rubi updates his mobile number again

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

95

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

Rubi updates his mobile number again

<“rubi”, “phone:mobile”> —> 890

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

96

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

Now he deletes his mobile

<“rubi”, “phone:mobile”> —> 890

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

97

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

98

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

So what is Rubi’s mobile number?

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

99

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

567

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

100

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

567

BUG?

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

101

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

query: <“rubi”, “phone:mobile”>

567

BUG?
NO!

In deletes we “insert” a flag
(tombstone)

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

102

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

Now he deletes his mobile

<“rubi”, “phone:mobile”> —> tombstone

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

103

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

<“rubi”, “phone:mobile”> —> tombstone

SSTable
6

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

104

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

<“rubi”, “phone:mobile”> —> tombstone

SSTable
6

So what is Rubi’s mobile number?

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

105

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

SSTable
6

query: <“rubi”, “phone:mobile”>

No results

<“rubi”, “phone:mobile”> —> tombstone

SSTable
3

SSTable
4

SSTable
1

SSTable
2

tablet

Example

106

memtable

node1

<“rubi”, “phone:mobile”> —> 123
<“rubi”, “phone:mobile”> —> 567

SSTable
5

SSTable
6

query: <“rubi”, “phone:mobile”>

No results

<“rubi”, “phone:mobile”> —> tombstone

Discussion

So how do we actually delete data from disk?

Do we have a limit on the number of SSTables?

Minor Compaction
The process of saving the memtable into an SSTable

• Goals:

• Shrinks the memory usage of the node

• Reduce the data that needs to be read from the log
on failures

107

Minor Compaction
The process of saving the memtable into an SSTable

• Goals:

• Shrinks the memory usage of the node

• Reduce the data that needs to be read from the log
on failures

108

How many SSTables would
we have over time?

Merging Compaction
The process of merging two (or more) SSTables into a
single new file

• A process that runs automatically in the background

• Optimization - can read also from the memtable

• The old SSTables (and maybe the memtable) can be
deleted once merging compaction completes

109

Major Compaction
The process of merging all SSTables into a single new
file

• Data is actually deleted only on major compactions

• before that, deleted values are only flag  
(by tombstones)

110

More on this later in the course

A note on Compaction
• It is a “background” process

• So why do we (as users) should care?

• Because it dramatically affects the performance

111

Process runs on Bigtable node

More on this later in the course

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
112

Bloom filters
• Probabilistic data structure that used to test whether

an element is a member of a set

• If the filter returns true - the element is present with
high probability, but not 100% (false positive)

• If the filter return false - the element is NOT in the set

113

Bloom filters in Bigtable
• A read operation may read from all SSTables of a tablet 

can you think of an example?

• If these SSTables (indexes) are not cached, a lot of disk
access may happen

• To reduce these IOs, Bigtable uses Bloom filters for each
SSTable (and keep them in memory) to reduce the
number of IOs

114

Bloom filters - how they work
• Initialize (0) an array of m bits

• There are k different hash functions of the range [0, m-1]

• For every element added to the set, apply the k hash
functions and mark the matching bits in the array

• To check if an element exists, run the k hash functions
and check the matching bits

• If all are flagged, return true.

• If any of the bits are 0, return false
115

Bloom filters - example
• m=18, k=3

116

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
117

Bigtable
• “A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map.”

• Built on 3 different layers

• Management (Chubby)

• Processing (Bigtable nodes)

• Storage (GFS)
118

<row:string, column:string, timestamp:int64> —> string

Data model

119

<row:string, column:string, timestamp:int64> —> string

columncolumn column

versions

israel#236
location:

Tel Aviv

name:last

boim

name:first

rubi
Eilat
Tel Aviv

row

israel#242
location:

Haifa

name:last

milo

name:first

tova
Tel Aviv
Jerusalem

row
pref:fav-color

red

sorted !!!

Schema design points (1)
• Bigtable is a key/value store, not relational  

no joins, atomic operation only within a single row

• Each table has only one index, the row key 
no secondary indexes

• Rows are sorted lexicographically by row key 
from the lowest to the highest byte string

120

Schema design points (2)
• Column families are not stored in any specific order.

• Columns are grouped by column family and sorted in
lexicographic order within the column family

• The intersection of a row and column can contain
multiple timestamped cells 
different versions

121

Schema design points (3)
• Ideally, both reads and writes should be distributed

evenly  
across the row space of a table

• Bigtable tables are sparse 
A column doesn't take up any space in a row that doesn't use the
column

122

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
123

Reminder - Components by layers

124

masterChubby

Bigtable nodes

GFS SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

SSTable
files

node3

tablet tablet tablet tablettablet

node1node2

Chubby
A highly available and persistent distributed lock
service

• 5 servers, uses the PAXOS algorithm for consistency

• Provides a namespace for directories and small files

• API for read/write (atomic) and locks 
on directories / files

125

node1 node2 node3 node4 node5

Chubby
A highly available and persistent distributed lock
service

• 5 servers, uses the PAXOS algorithm for consistency

• Provides a namespace for directories and small files

• API for read/write (atomic) and locks 
on directories / files

126

node1 node2 node3 node4 node5

Opensource:

Chubby - Bigtable usage
Bigtable uses chubby to:

1. Select a node (from Chubby) as Master

• this is done by creating a “lock” on a fixed file

2. Stores bootstraps data (new cluster/table)

3. Stores schema data (table / column families)

4. Discover / manage Bigtable nodes

• There is a directory “servers” and each server has a matching file with a lock

• As long as the lock is active, the server is live

• If the sessions with Chubby is lost, the lock is released and the Bigtable server is
considered down

127

Chubby - Bigtable usage
Bigtable uses chubby to:

1. Select a node (from Chubby) as Master

• this is done by creating a “lock” on a fixed file

2. Stores bootstraps data (new cluster/table)

3. Stores schema data (table / column families)

4. Discover / manage Bigtable nodes

• There is a directory “servers” and each server has a matching file with a lock

• As long as the lock is active, the server is live

• If the sessions with Chubby is lost, the lock is released and the Bigtable server is
considered down

128

If Chubby becomes unavailable for
an extended period of time

—> Bigtable becomes unavailable

Master node
The master node is responsible to

1. Assigning tablets to Bigtable nodes 

root tablet for METADATA table - more on this next

2. Detecting the addition / expiration of Bigtable nodes

3. Balancing Bigtable nodes 

moving tablets

4. Schema management 

tables / column families

129

Agenda
• History

• Data model

• Building blocks

• SSTable (and memtable)

• Bloom filter

• Summary

• Extra - Chubby

• Extra - Tablet location
130

Reminder - Tablet
• A set of SSTables over a matching range  

comprise a tablet

131

tablet
SSTable files

start key: israel#a end key: israel#d

SSTable files … SSTable files SSTable files

Tablet location
• How Bigtable stores the mapping between tablets

and nodes?

132

Bigtable nodes
node3

tablet tablet tablet tablettablet

node1node2

Tablet location
• How Bigtable stores the mapping between tablets

and nodes?

133

Bigtable nodes
node3

tablet tablet tablet tablettablet

node1node2

For example, where is the tablet for the
key “tel-aviv#rubi” for table users?

Tablet location
• How Bigtable stores the mapping between tablets

and nodes?

• Using “3-level hierarchy” index similar to B+ trees 
B+ trees are search trees with “a lot of children”

134

Bigtable nodes
node3

tablet tablet tablet tablettablet

node1node2

For example, where is the tablet for the
key “tel-aviv#rubi” for table users?

Tablet location
• How Bigtable stores the mapping between tablets

and nodes?

• Using “3-level hierarchy” index similar to B+ trees 
B+ trees are search trees with “a lot of children”

135

Bigtable nodes
node3

tablet tablet tablet tablettablet

node1node2

For example, where is the tablet for the
key “tel-aviv#rubi” for table users?

High fanout —>
less I/O operation to find element —>

great for indexes

This Index is implement by
• A system Bigtable table (METADATA)

• the row key is [table]#[last range] of a user tablet

• A Chubby file (root tablet)

• A single file holding the tablet of METADATA tablet

• It is never split

136

METADATA table

tablet locationtable1#a

tablet locationtable1#x

tablet locationtable2#c

tablet

tablet locationtable2#u

tablet locationtable3#d

tablet locationtable3#q

tablet

tablet

tablet

tablet

table1

tablet

tablet

tablet

Table2

tablet

tablet

tablet

table3

Chubby file

tablet locationtable2#c

tablet locationtable3#q

root tablet

Some numbers
• Each METADATA row stores ~1KB

• Assume 128MB per METADATA tablet

• 217 records per tablet

• 3 level hierarchy - 234 tablets

• 17,179,869,184 user tablets

138

