
1

������

�����������	�
����	
��	
�����
����
��������
�
�
��

����������	
��	�����������������������������

2

• Google: "problems with software development”

– Requirements are complex

– Clients usually do not know all the requirements in advance

– Requirements may be changing

– Frequent changes are difficult to manage

– Process bureaucracy (documents over development)

– It takes longer

– The result is not right the first time

– It costs more

– Applying the wrong process for the product

Problems in software development

3

����������������������������������

������������	�
����������������������

�����������������������������

����
��������������������������������������

������������������	�������	��
������� ����

���������	��������!!!

4

�����������
��	���"��������
�#$�%��������	���������
������������������������

��������"�����	���������������������������������������

���
���

Based on: Mullet, D. (July, 1999). The Software Crisis, Benchmarks Online - a monthly

publication of Academic Computing Services 2(7).

������������������
���	������������������������������

$&!$��������'

The National Institute of Standards and Technology (NIST), New Release of June 28, 2002.

���������������Q2���� !!"������������	��������� !!����������#

5

What is eXtreme Programming
• eXtreme Programming originated in industry.�

• Differences from traditional methodologies

– All developers are involved with requirements-design-code-testing

– Emphasis on people vs. development activities & schedule

– XP specifies how to behave; still leaves freedom

• 12 practices

• 4 values: feedback, simplicity, communication, courage

• The meaning of ‘eXtreme’

• Optimum: teams up to 12 developers

– can be adjusted to bigger teams.

6

Why XP?

• Survey:

– 31 XP/Agile-methods early adopter projects

– 14 firms

– Findings:

• Cost reduction: 5-7% on average

• Time to market compression: 25-50% reduction



7

Why XP?

• big companies using XP in at least some capacity

– Ford Motor, Chrysler, IBM, HP

• smaller software houses:

– Mayford Technologies

– RoleModel Software

• tutorials: Industrial Logic, Object Mentor

8

Project Timetable

• Short release times - each one 9 weeks.

• A release has three iterations.

• An iteration lasts 3 weeks.

• Each iteration starts with a business day.

• Rest of the days are development days

9

Week 9, Release 1,
Iteration 3

Week 8, Release 1,
Iteration 3

Week7, Release 1,
Iteration 3

Week 6, Release 1,
Iteration 2

Week 5, Release 1,
Iteration 2

Week 4, Release 1,
Iteration 2

Week 1, Release 1,
Iteration 1

Week 2, Release 1,
Iteration 1

Week 3, Release 1,
Iteration 1

Business Day

Business Day

Project Timetable: one release
Business Day

10

Business Day

• On-site customer

• Planning game

• Small releases

• Simple design

• Metaphor
��������	

�����������������
��������

11

Business Day – Reflection

• 5 practices (out of 12)�

– Planning game

– On-site customer

– Small releases

– Simple design

– Metaphor

• Planning game

– All developers participate

– All have the same load

– All developers get an

overview of the entire

development process

– Simple means

– Very detailed

– Levels of abstraction

12

Business Day – Reflection

• 5 practices (out of 12)�

– Planning game

– On-site customer

– Small releases

– Simple design

– Metaphor

• On-site customer

– Customer’s on-going

feedback

• Small releases

– On-going opportunity to

update/change

requirements



13

Business Day – Reflection

• 5 practices (out of 12)�

– Planning game

– On-site customer

– Small releases

– Simple design

– Metaphor

• Simple design

– Develop only what is

needed for your

development task

• Metaphor

– Bridges customers-

developers-business gaps

14

Development Day

• Stand-up meeting

• The development environment

• Pair programming

• Test driven development (acceptance, unit-test)

• Code standards

• Refactoring

• Simple design

• Continuous integration (one integration machine)

• Collective ownership

• Sustainable pace (40-hour week)

��������	

�����������������
��������

15

Development Day - Reflection

• The development environment

– All see all; fosters communication

• Stand-up meeting

– All know what all do

• Pair programming

– Each task is thought on two levels of abstraction

• Unit test (automatic test first)

– First: improves understanding; Automatic: testing is easy

– Developers program and test

– Testing becomes manageable

– Success vs. failure

16

Development Day - Reflection

• Continuous integration

– Reduces integration risks in later stages

• Collective ownership

– Important in companies with high turnover

• Coding standards

• Refactoring and simple design

– Code improvement is part of the methodology (though it doesn't

produce code), gradual process

• Sustainable pace (40-hour week)

– Intense and productive work, developers are not tired

17

Development and Business Days – Reflection

Collective ownership

Pair programming

Sustainable pace

On-site customer

Planning game

Metaphor

Refactoring

Simple design

Coding standards

Testing

Continuous integration

Small releases

Human/Social

Perspective

Code/Technical

Perspective

18

The 12 XP practices

�����

��
	�����������
��
	������
	��
����
�����

���
	���������
����������

Source: Beck, K. (2000). eXtreme Programming explained, Addison Wesley.



19

What is eXtreme Programming

• Agile Software Development Methodology

– Other agile methods: SCRUM, Feature Driven

Development, DSDM

– All acknowledge that the main issue of software

development is people: customers, communication

• Manifesto for Agile Software Development:

http://agilemanifesto.org/

• eXtreme Programming: Kent Beck, 1996, Chrysler

20

Why XP?

• You do not do XP to save money; However,

XP shortens time to market

• XP is a mature software development

method

21

Why XP? – Analysis

• Shorter development period:

– Code is easy-to-work with:

• less bugs: unit tests

• code is more readable & workable (invest now to gain benefits

later):pair programming, refactoring, coding standards

– Development is manageable and controlled:

• accurate estimation: small releases

• meets customer needs: customer on-site, planning game,

acceptance tests

22

Why XP? – Analysis

• Shorter development period (cont):

– Knowledge sharing, if one leaves everything continues

as usual: pair programming, collective ownership

– Production is increased: pair programming (work all the time),

sustainable pace

– Cost for requirements change/update/elaboration is

CONSTANT: simple design, planning game (redundant features

are not added by customer and developers)

23

Why XP?
Barry W. Boehm (1981). Software Engineering Economics,

Englewood Cliffs, N.J.: Prentice Hall.

– 63 software development projects in corporations such as IBM.

Phase of requirement change Cost Ratio

Requirements 1

Design 3-6

Coding 10

Development testing 15-40

Acceptance testing 30-70

Operation 40-1000

24

Why XP?
• Under the assumption that “the later a requirements is

introduced the more expensive it is”, customers (and

developers) try to make a “complete” list of requirements.

• Under the assumption that “cost for introducing an update in

the requirements is constant”, customers (and developers)

do not assume what the customer will need and develop

exactly and only what is needed.



25

XP in Practice: Conceptual Changes

• XP encourages:

– Cooperation (vs. knowledge-is-power)

– Simplicity (vs. habit-of-high-complexity)

– Change in work habits

26

References
Beck, K. (2000). Extreme Programming Explained: Embrace

Change, Addison Wesley.

Ron Jeffries, What is Extreme Programming?:

http://www.xprogramming.com/xpmag/whatisxp.htm

eXtreme Programming at the Technion

RoleModel:http://www.rolemodelsoftware.com/process/whatIs
Xp.php

27

XP in practice:
Success and failure

3 Sep, 2002: XP - An interview with Kent Beck

Q: What are the issues you see your clients struggling with?

KB: One of the issues is redefining failure or redefining

success. For example, you think that you have a great

idea for a project, and it's going to take you nine months to

really have it ready for the market. You [may] discover

after four weeks that you are going one-tenth the speed

that you thought you would, and you cancel the project. Is

that a failure or success? In many organizations, this is

perceived as a failure.

28

XP in practice:
Success and failure

3 Sep, 2002: XP: An interview with Kent Beck

KB (cont’): In the XP world, providing information that allows

you to constantly make that decision after four or eight

weeks (out of a nine-month development cycle) is what

you're there for. In the XP world, you call that a dramatic

success. Now you have this cultural mismatch between how

outsiders are going to view your outcome and how you view

it inside the team. A lot of people [clients] struggle with that.

They think that canceling a project is a bad thing, but I think

that canceling a project is a good thing -- as long as you

cancel the right one.


