
Demonstration 
 

This demonstration shows how to represent the DEPARTMENTS table of hr schema 
using a container-managed persistent (CMP) entity bean. 
Note: Start SQL*Plus, login with database account details and issue the command  
desc DEPARTMENTS; 
This is to show the students the various fields and the datatype of each field. Do not start 
SQL*Plus if you want to show the same with JDeveloper. 
The complete workspace for this demo is under demos/lesson14. 
 
Follow these steps to create a CMP entity bean using Oracle JDeveloper 10g. 
 

1. Create a workspace with the name lesson14. 
2. Create a project and name it departmentsdemo. 
3. Right-click the project in the System-Navigator and select New.. 
4. Choose Enterprise JavaBeans from the Business tier of Categories 
5. Select ‘Entity Beans from Tables—Container-Managed Persistence’ from Items. 

Click OK. 
Note: Please let the students know that they can also create an entity bean by 
selecting ‘Entity Bean’ from Items.  

6. The wizard is displayed. Click the Next button. Choose Enterprise JavaBeans 2.0 
from the drop down list of EJB Version. Click the Next button. 

7. Database connection details will be displayed. Recollect that you have already 
created a connection by name hr, pointing to your database. The hr connection 
details will be displayed. If there is no connection existing, click on New to create 
a new connection. 

8. If a connection already exists, click on Next. Wait till the query on database 
objects is complete. 

9. Select DEPARTMENTS table. Move it to the Selected items and click the Next 
button. 

10. We will be generating a remote interface for this CMP, therefore check the 
checkbox ‘Generate Remote Interfaces’ and uncheck the ‘Generate Local 
Interfaces’ checkbox. Click the Next button. 

11. You can accept the name provided for the Entity bean, else you can change it in 
the field Entity Name. We will accept the default name Departments for this 
demo. 

12. Click the Finish button. 
13. Observe that the Departments bean, the ejb-jar.xml file, and the orion-ejb-jar.xml 

file are created. They are displayed in the System-Navigator. 
14. Open the Departments.java file in the code editor and show the students that the 

set and get methods for each of the field in the DEPARTMENTS table is created. 
15. Open the DepartmentsHome.java file in the code editor. Observe the two create 

methods and two finder methods that are created. JDeveloper picks the not null 
fields of the table to generate a create method with arguments. Another no 
argument create() method is always provided. 

16. Open the DepartmentsBean.java file in the code editor and check the 



implementation for create(), set, and get methods. 
17. Observe that the set and get methods are abstract methods in the bean, without 

any implementation. The container implements these methods at run time. 
18. Observe that the bean class does not contain any instance variables corresponding 

to the field of the table.  
19. Double-click on the ejb-jar.xml file. Show the students that this file contains 

information about the various components (remote interface, home interface, 
primary-key class, and so on). Let the students know that there is a <cmp-field> 
tag for each of the field in the database table. For example, 

     <cmp-field> 
            <field-name>departmentId</field-name> 
     </cmp-field> 

20. Open the orion-ejb-jar.xml file and observe that the Datasource information, table 
information is provided here. Also show the mapping of each of the fields in the 
database table. 

21. In the System-Navigator, right-click on the Departments bean and select New 
Sample Java Client. Check ‘Connect to OC4J Embedded in JDeveloper’ radio 
button and click the OK button. 

22. Edit the DepartmentClient.java file. Comment some of the code in this file to 
make the demo simpler. 

23. Comment the following lines in the client program to keep the demo simple. 
 
/* Collection coll = departmentsHome.findAll(); 
Iterator iter = coll.iterator(); 
while (iter.hasNext()) 
{ 
departments = (Departments)iter.next(); 
System.out.println("department_id = " +  
departments.getDepartmentId()); 
System.out.println("department_name = " + 
departments.getDepartmentName()); 
System.out.println("manager_id = " + 
departments.getManagerId()); 
System.out.println("location_id = " + 
departments.getLocationId()); 
System.out.println(); 
} */ 

 
 
 
 

24. Add the following lines to create a department with department_id 404 and 
department_name security, and to invoke various methods. 

 
System.out.println(" CREATING A NEW DEPARTMENT WITH ID 
404...") ; 
departments =departmentsHome.create(new Long(404),"Security"); 



System.out.println(" SUCCESSFUL "); 
System.out.println("Getting the DEPARTMENT_NAME " + 
departments.getDepartmentName()); 
System.out.println("Changing the DEPARTMENT_NAME to 
Security Services " ); 
departments.setDepartmentName("Security Services"); 
System.out.println("PRINTING THE DEPARTMENT_ID AND 
DEPARTMENT_NAME"); 
System.out.println(departments.getDepartmentId( ) + " " + 
departments.getDepartmentName( )); 

 
Compile and the run the Entity Bean by following these steps 
 

1. Right-click on the Departments bean and select Make. 
2. Right-click on the DepartmentClient.java and select Make. 
3. Right-click on Departments bean and select Run. 
4. Right-click on DepartmentsClient.java and select Run  

The following output will be displayed in the log window. 
CREATING A NEW DEPARTMENT WITH ID 404... 
SUCCESSFUL 
Getting the DEPARTMENT_NAME Security 
Changing the DEPARTMENT_NAME to Security Services 
PRINTING THE DEPARTMENT_ID AND DEPARTMENT_NAME 
404 Security Services 
Process exited with exit code 0. 

5. You can issue commands in SQL*Plus to observe that 1 row is added to the 
departments table. 
SQL>SELECT count(*) FROM DEPARTMENTS; 
28 
SQL>SELECT department_id, department_name FROM DEAPARTMENTS 
WHERE department_id=404; 

 
 
 
 

 
DEPARTMENT_ID DEPARTMENT_NAME 
------------------------------------------------------------------- 
404 Security Services 
 


