ntro to **Recommender Systems**

Dr. Rubi Boim

TLDR for today

<u>Recommending by</u>

- Generate a list of candidate items
- For all items predict the probability of the event
- Select the top k with the highest score (or apply diversity $/ \dots$)

<u>Recommender system types</u>

- Content Based
- Collaborative Filtering
- Hybrid

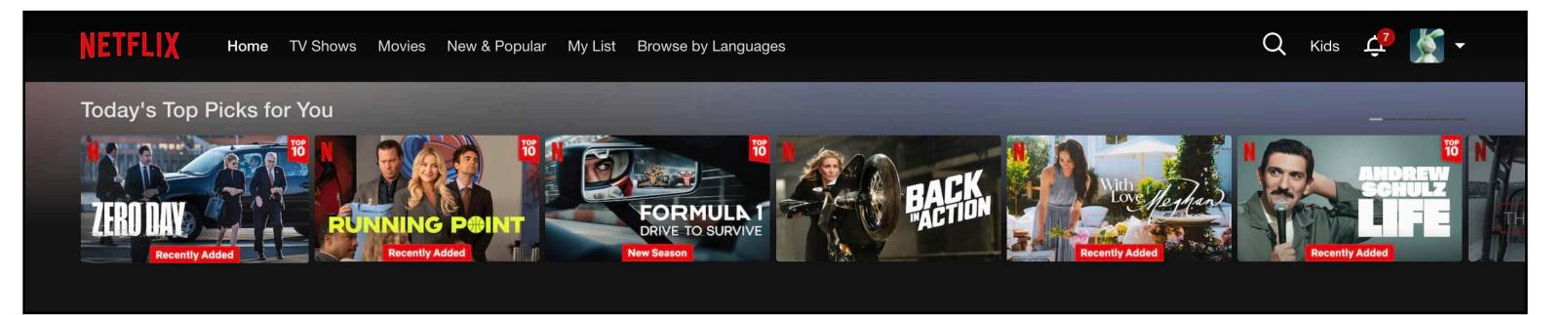
Intro and Intuition

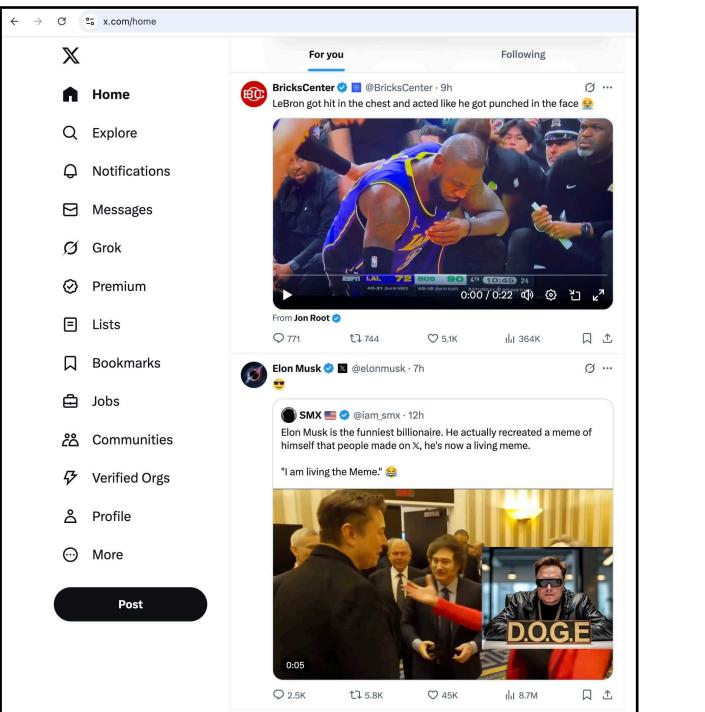
Content Based

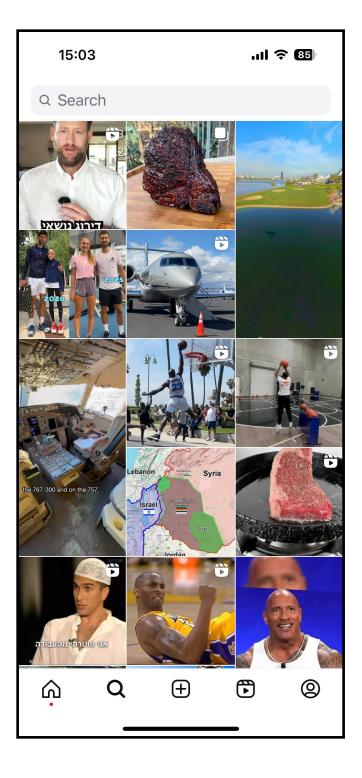
Collaborative Filtering

Common challenges

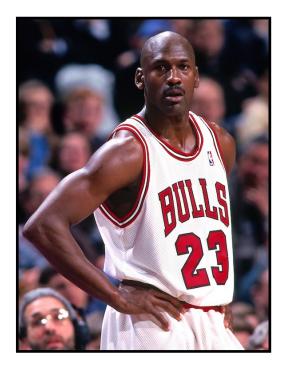
How can you build these?



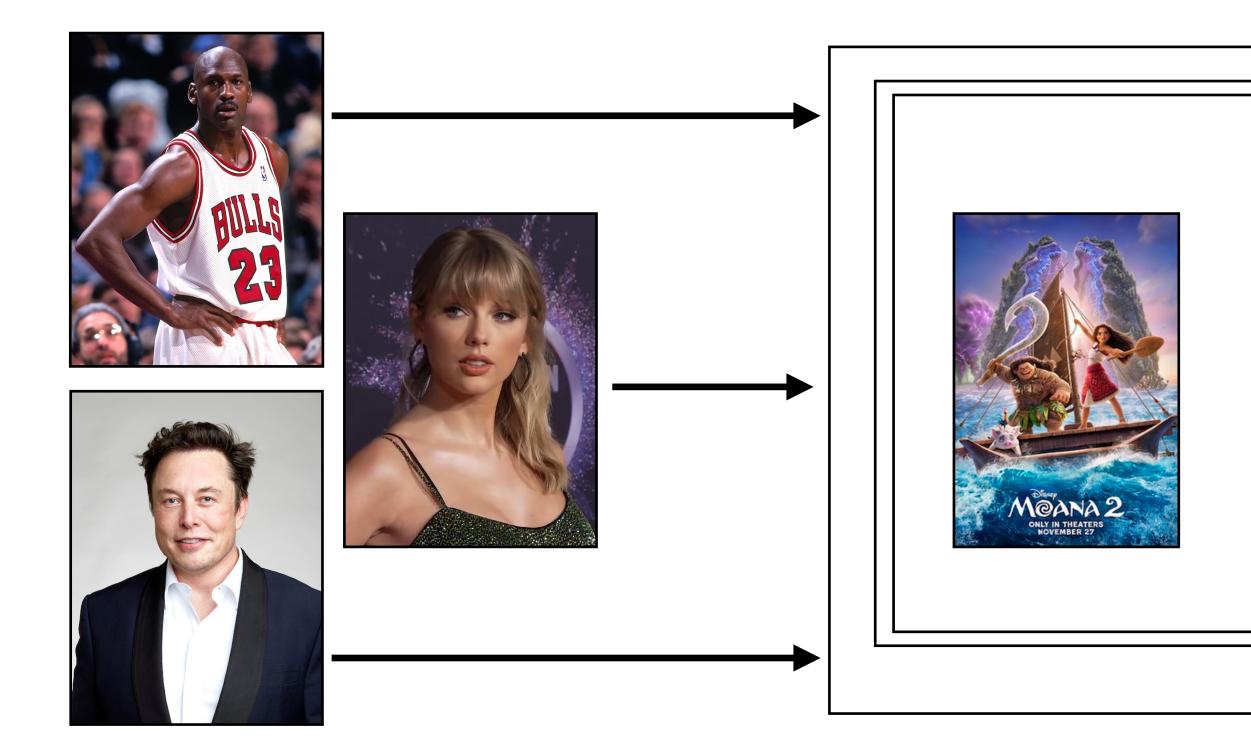




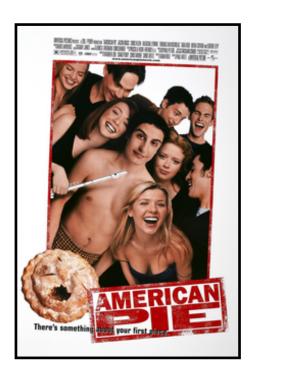
An editor manually selects the items order



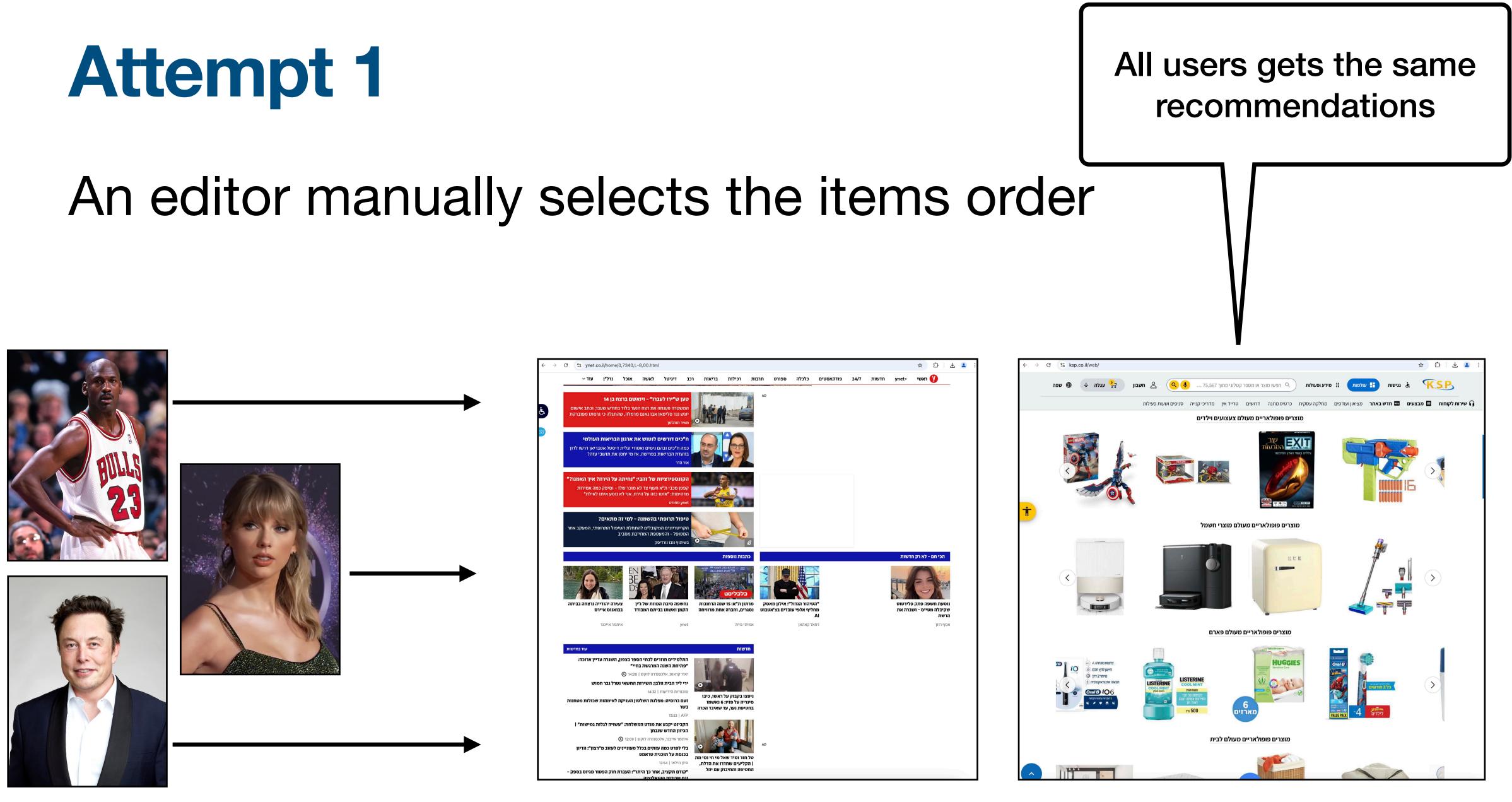
Attempt 1 An editor manually selects the items order



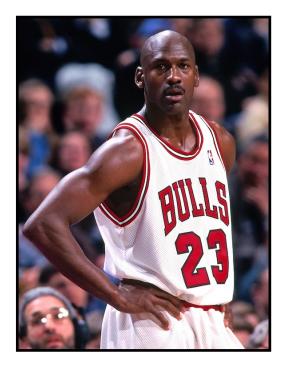
All users gets the same recommendations



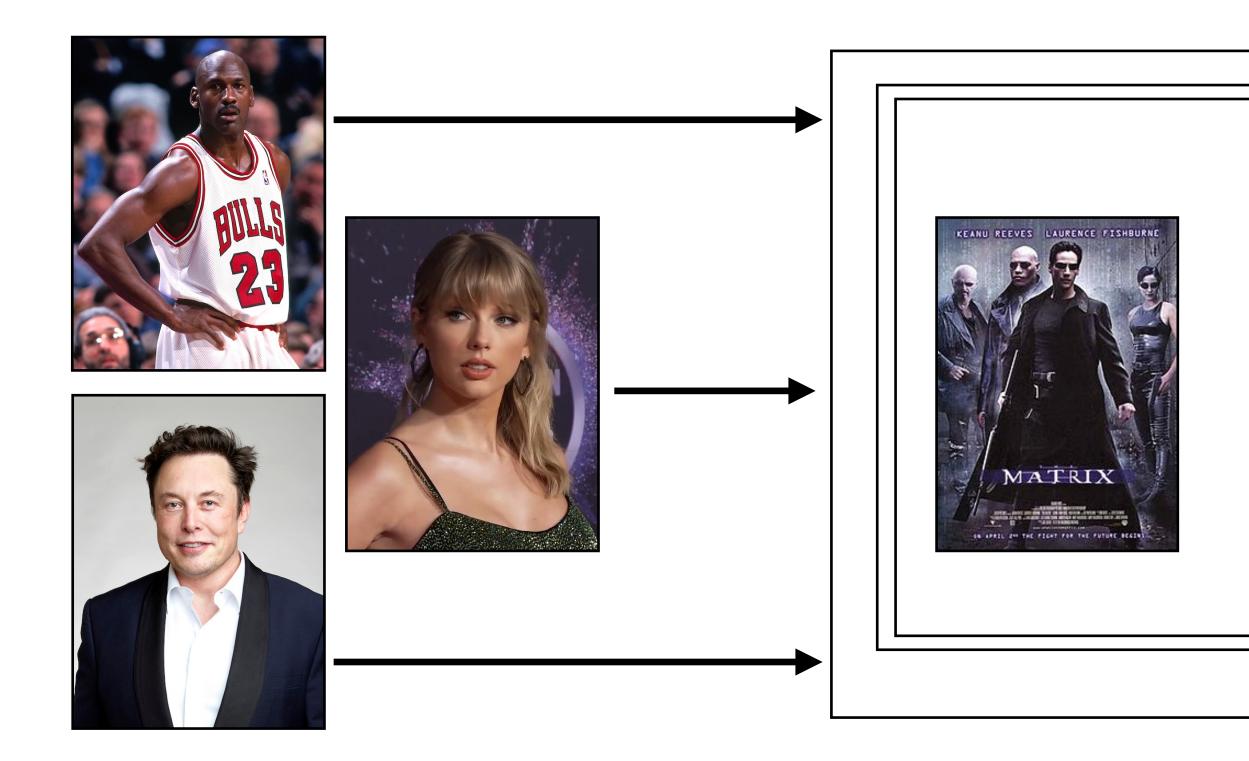
 $\circ \circ$



Recommending weekly trending

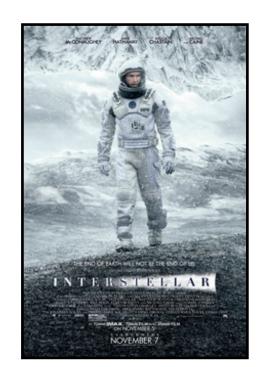


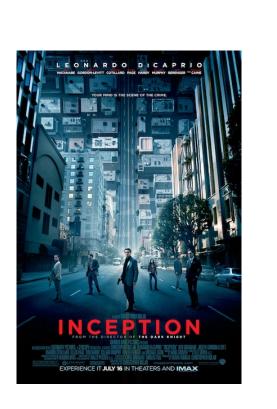
Recommending weekly trending



All users gets the same recommendations

(but it may change each day)

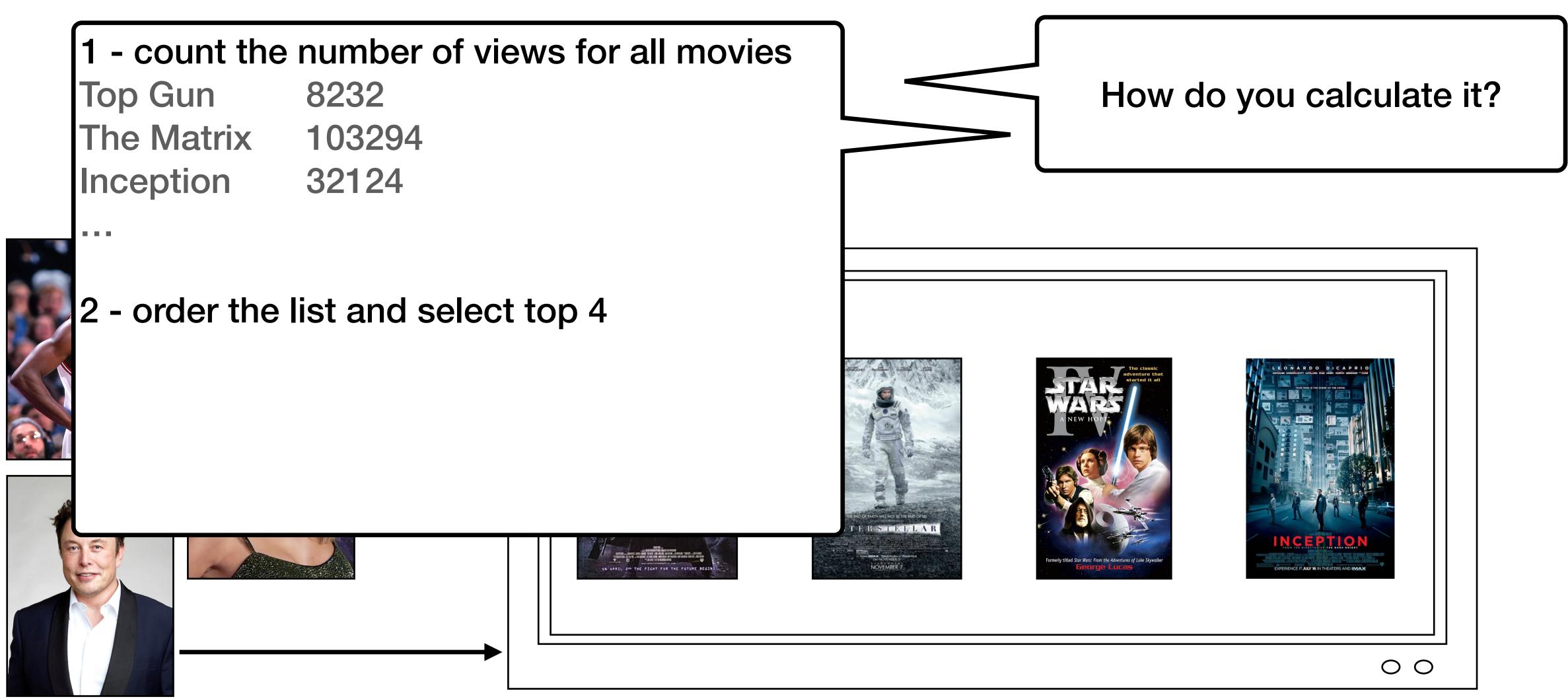


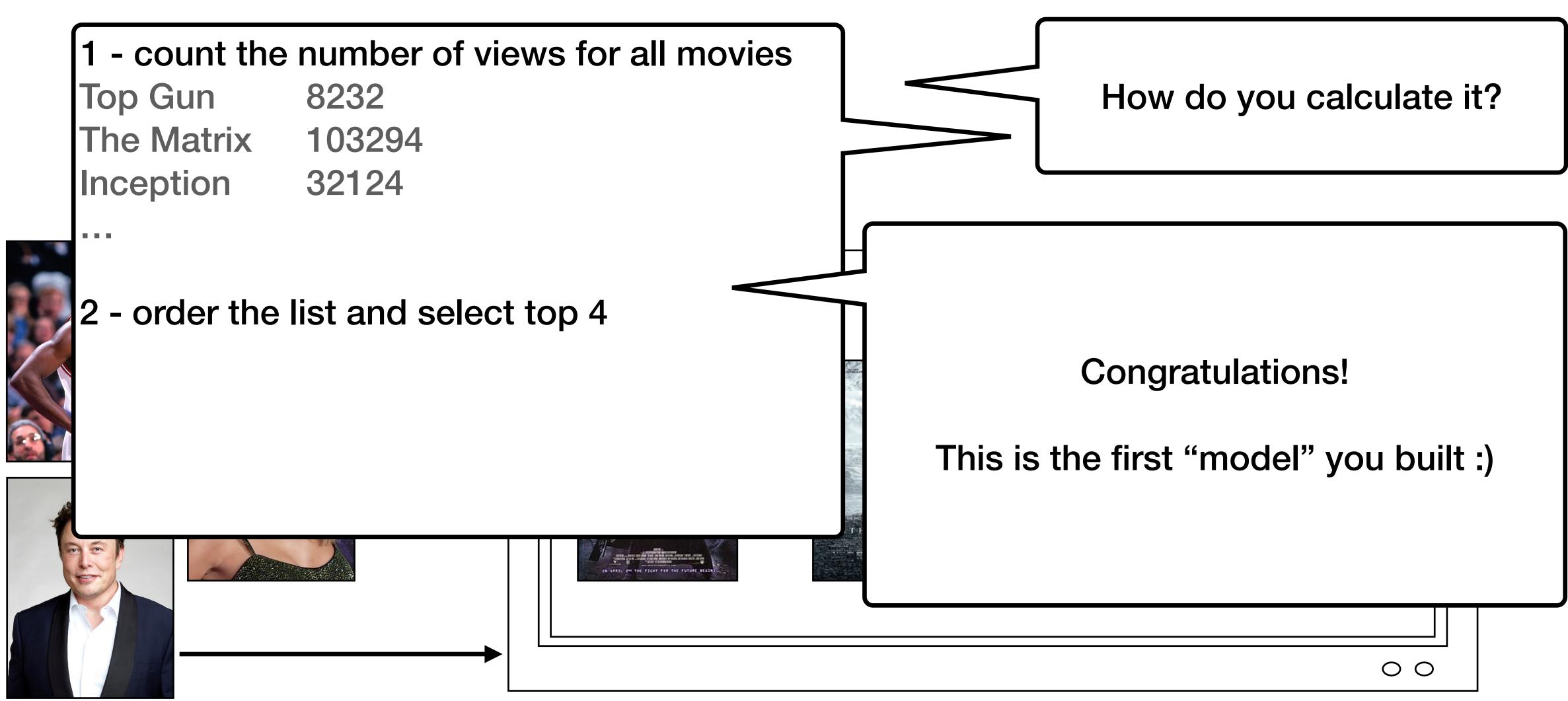


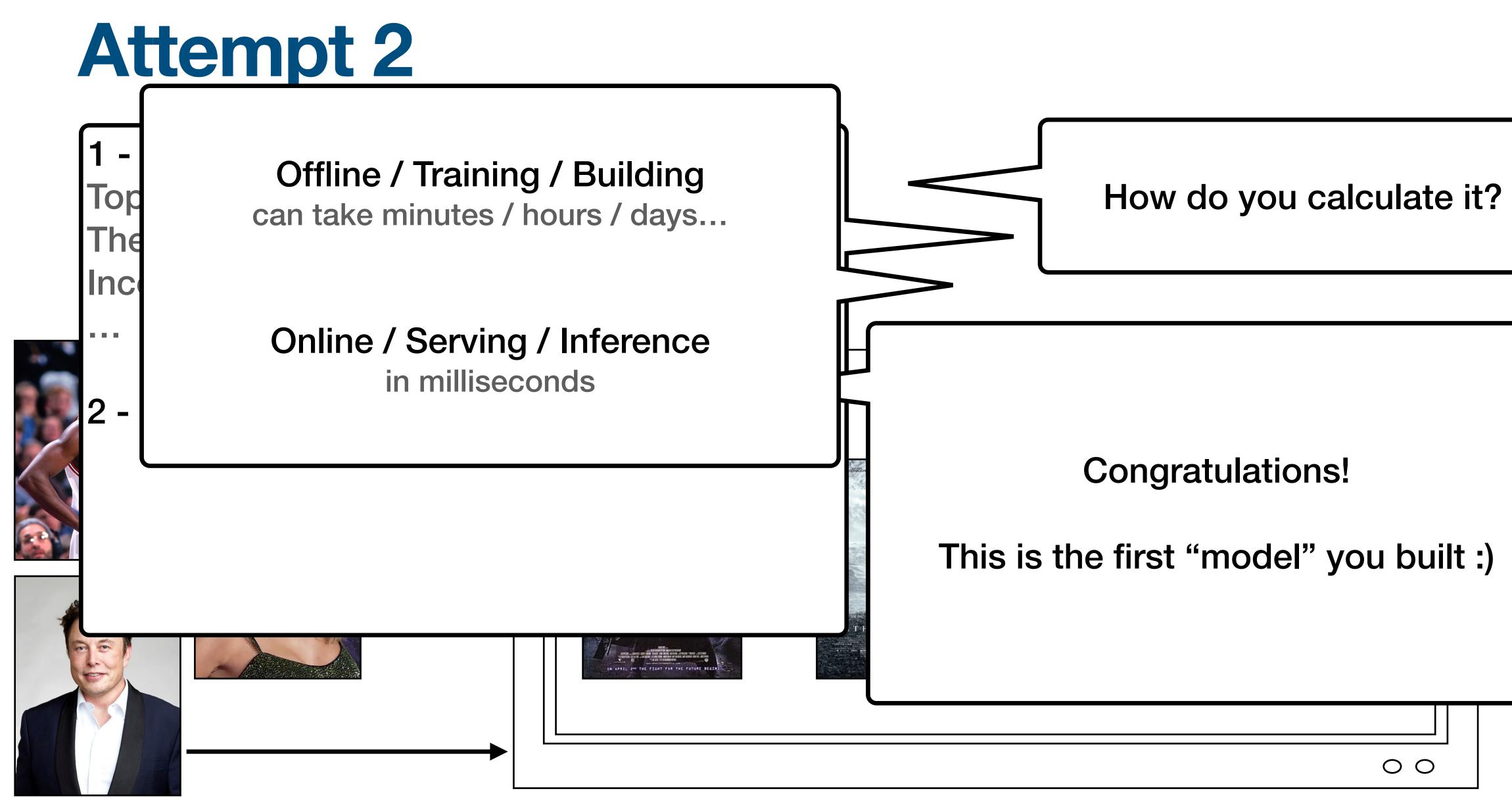
 $\circ \circ$

Recommending weekly trending —

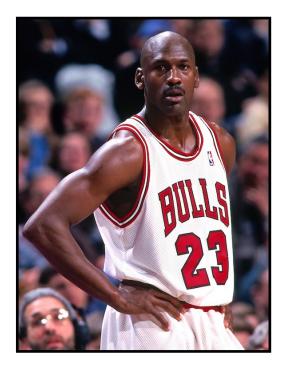
How do you calculate it?

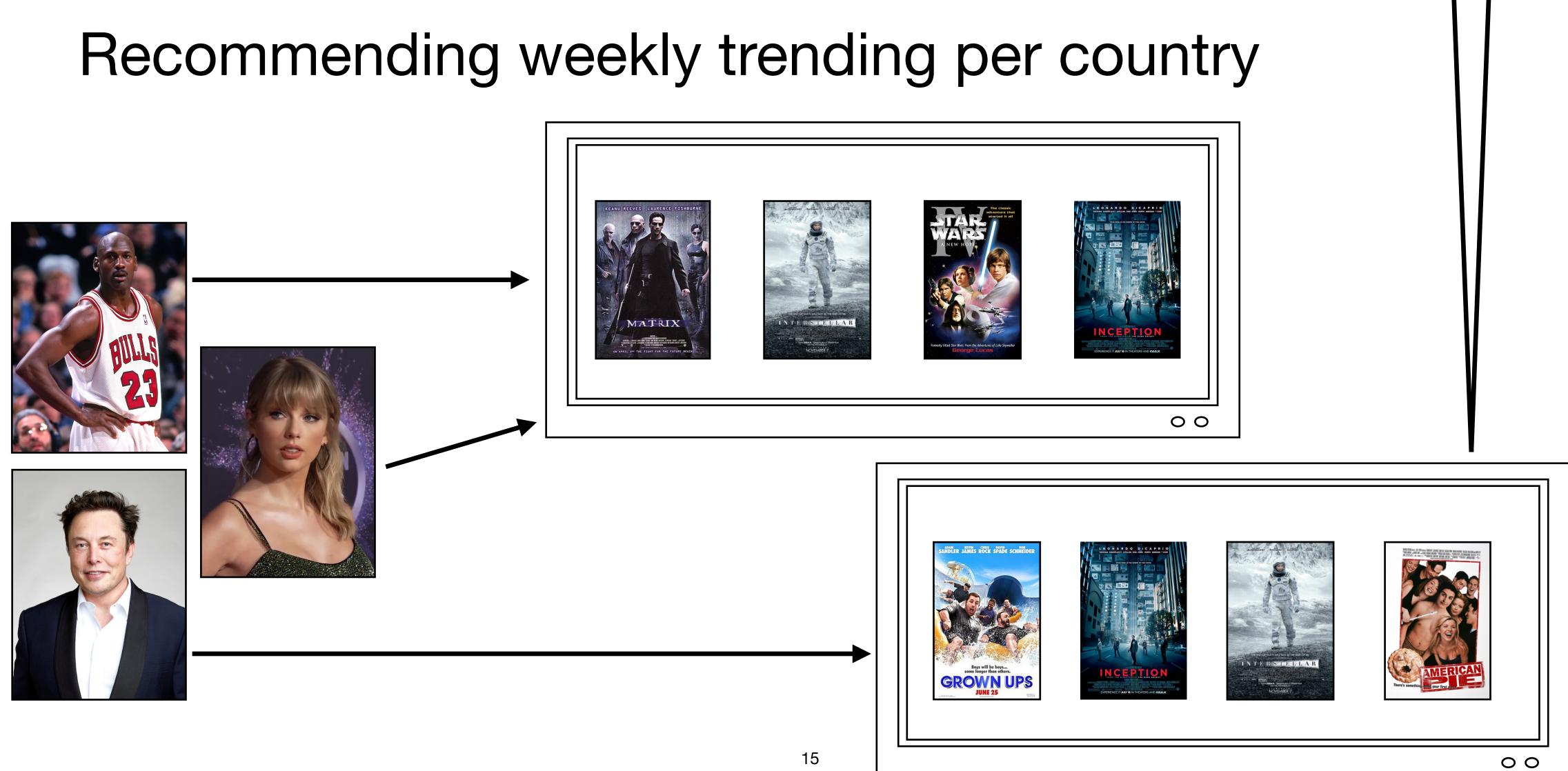






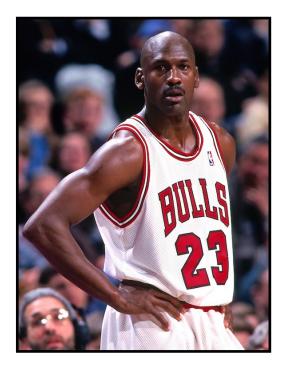
Recommending weekly trending per country



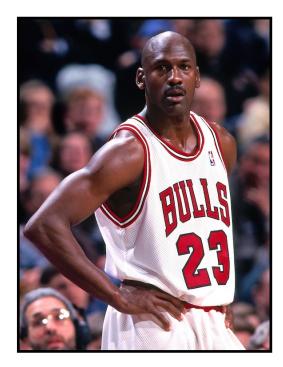


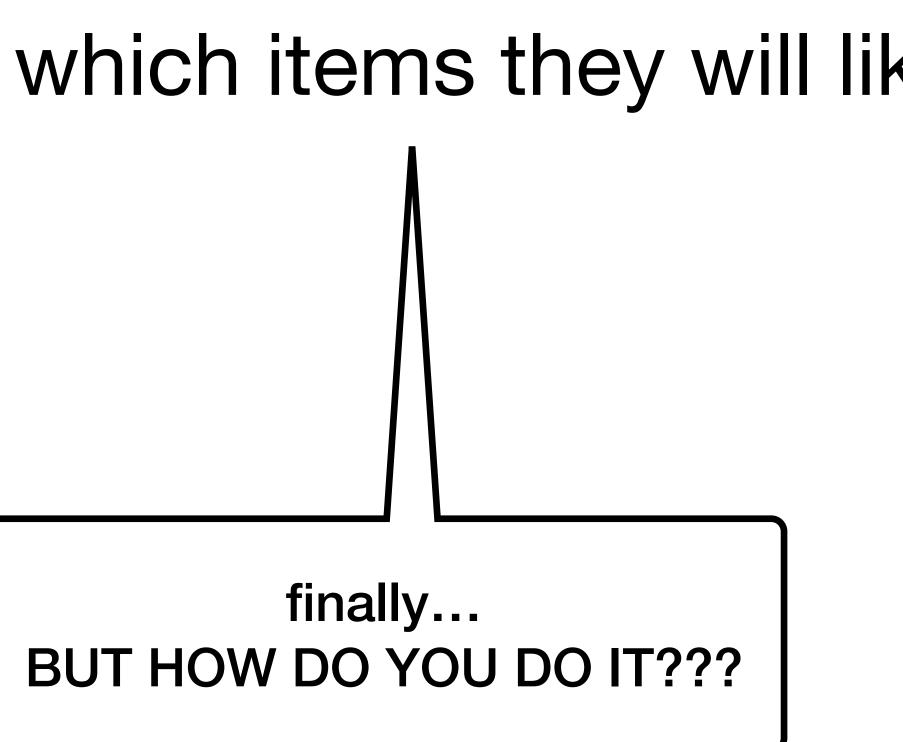
Still not really personalized (How many people are in India?)

For each user, predict which items they will like



For each user, predict which items they will like





Recommender System 101

- Generate a list of candidate items
- Select the top k with the highest score (or apply diversity / ...)

For all items predict the probability of the event

Recommender System 101 (example)

- Generate a list of candidate items
- Top Gun 2: 0.84, The Matrix: 0.62, American Pie: 0.94
- Select the top k with the highest score (or apply diversity / ...) American Pie, Top Gun 2

all the movies with license in Israel which the user had not seen

For all items predict the probability of the event

Recommender System 101 (example)

- Generate a list of candidate items
- Top Gun 2: 0.84, The Matrix: 0.62, American Pie: 0.94
- Select the top k with the highest score (or apply diversity / ...) American Pie, Top Gun 2

all the movies with license in Israel which the user had not seen

For all items predict the probability of the event

how do we calculate this?

 Content based based on semantic / static properties

 Collaborative filtering based on user behavior

• | A mix of the two

 Content based based on semantic / static properties

 Collaborative filtering based on user behavior

A mix of the two

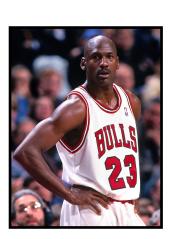
Intuition

because you watch comedy movies with Adam Sandler here are more comedies you might like

Content based ______
based on semantic / static properties

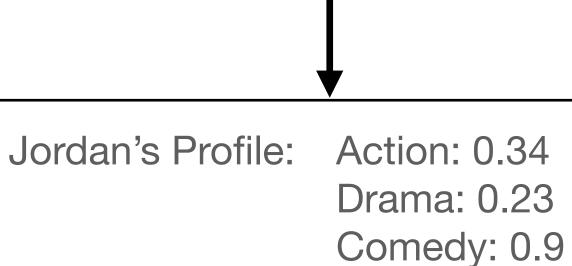
 Collaborative filtering based on user behavior

 Hybrid A mix of the two



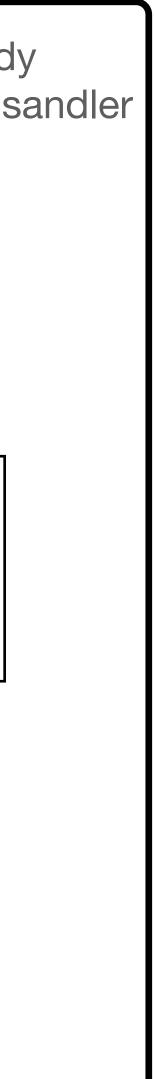
view history:

ComedyAdam sandler



SciFi: 0.3

recommendation:



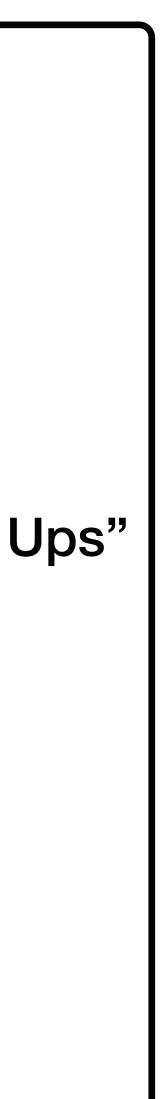
 Content based based on semantic / static properties

 Collaborative filtering based on user behavior

A mix of the two

Intuition

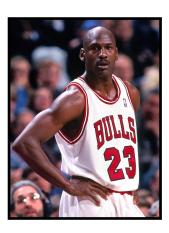
Other users who watch "Grown Ups" also watched...



 Content based based on semantic / static properties

 Collaborative filtering based on user behavior

A mix of the two



view history:

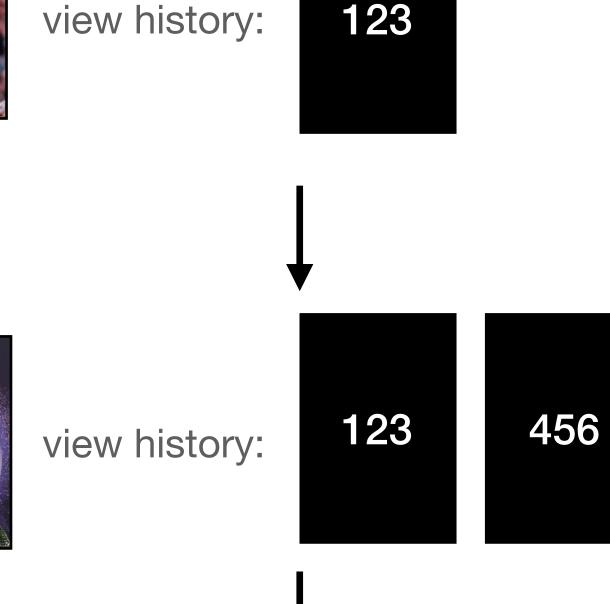
view history:

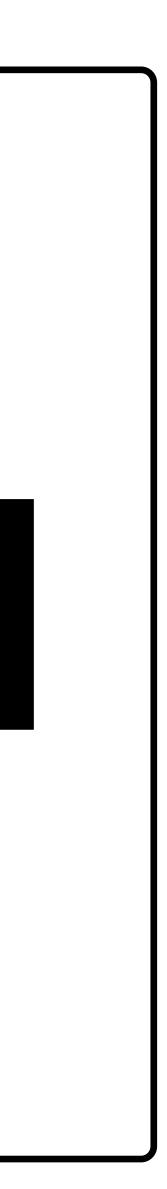
recommendation:

THIS IS IMPORTANT!

Collaborative Filtering works without any prior semantic knowledge

You can blend any type of items together in the same algorithm (movies, food, books, hotels..)





 Content based based on semantic / static properties

 Collaborative filtering based on user behavior

A mix of the two

Intuition

Mix the semantics with CF (there are a lot of ways)

for example, predict new genres the user might like

A short history lesson - "The Netflix Prize"

In 2006 Netflix offer \$1M to the team who will improve their recsys by 10% (RMSE error)

- First "big" public data set 0.5M user, 17k movies, 100M ratings (1-5)
- Hugh leap forward for recommender systems and for ML competitions -> Kaggle started in 2010

A short history lesson - "The Netflix Prize" team who will improve or It was proven that CF is better than CB THIS IS COUNTER INTUITIVE Think about it, in order to predict movie ratings you DATE 09-21-09 do not need to know *any* semantic information ORDER OF BellKor's Pragmatic Chaos s 1,000,000 a 00/100 such as actor, genre, year... Read Hastings. on The Netflix Prize 1-5) In practice btw you would use a hybrid approach mender systems tarted in 2010

Intro and Intuition

Content Based

Collaborative Filtering

Common challenges

Content Based

genres / categories / actors / release date / price / ...

 Build a profile for each user (explicit / implicit)

Build a profile for each item using its features (attributes)

but extracting the features from the items she previously interact with

Recommend items with similar profiles to the user

Content Based

genres / categories / actors / release date / price / ...

 Build a profile for each user (explicit / implicit)

• Build a profile for each item using its features (attributes)

But how do you (1) create profiles (2) compare profiles

but extracting the features from the items she previously interact with

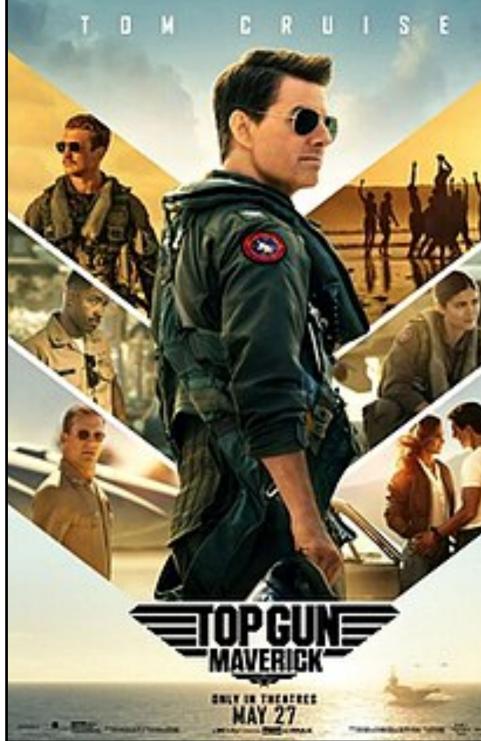
Recommend items with similar profiles to the user

Feature extraction (by data types)

 Structured metadata genres / categories / actors / release date / price / ...

• Free text description / plot / ...

 Visual images / videos



Feature extraction (by data types)

 Structured metadata genres / categories / actors / release date / price / ...

• Free text description / plot / ...

 Visual images / videos

Already extracted (structured)

(You just might want to filter out some)

Feature extraction (by data types)

 Structured metadata genres / categories / actors / release date / price / ...

• Free text description / plot / ...

 Visual images / videos

Extract the features from the text (Tokenization, filter stop words, apply stemming...)

"Top Gun: Maverick is a 2022 American action drama film directed by Joseph Kosinski and written by Ehren Kruger, Eric Warren Singer, and Christopher McQuarrie. A sequel to the 1986 film Top Gun, Tom Cruise reprises his starring role as the naval aviator Maverick."

"Top Gun: Maverick is a 2022 American action drama film directed by Joseph Kosinski and written by Ehren Kruger, Eric Warren Singer, and Christopher McQuarrie. A sequel to the 1986 film Top Gun, Tom Cruise reprises his starring role as the naval aviator Maverick."

[Top, Gun, Maverick, is, a, 2022, American, action, drama, film, directed, by, Joseph, Kosinski, and, written, by, Ehren, Kruger, Eric, Warren, Singer, and, Christopher, McQuarrie, A, sequel, to, the, 1986, film, Top, Gun, Tom, Cruise, reprises, his, starring, role, as, the, naval, aviator, Maverick]

Tokenization

"Top Gun: Maverick is a 2022 American action drama film directed by Joseph Kosinski and written by Ehren Kruger, Eric Warren Singer, and Christopher McQuarrie. A sequel to the 1986 film Top Gun, Tom Cruise reprises his starring role as the naval aviator Maverick."

[Top, Gun, Maverick, is, a, 2022, American, action, drama, film, directed, by, Joseph, Kosinski, and, written, by, Ehren, Kruger, Eric, Warren, Singer, and, Christopher, McQuarrie, A, sequel, to, the, 1986, film, Top, Gun, Tom, Cruise, reprises, his, starring, role, as, the, naval, aviator, Maverick]

[Top, Gun, Maverick, 2022, American, action, drama, film, directed, Joseph, Kosinski, written, Ehren, Kruger, Eric, Warren, Singer, Christopher, McQuarrie, sequel, 1986, film, Top, Gun, Tom, Cruise, reprises, starring, role, naval, aviator, Maverick]

Tokenization

Removing Stop Words

"Top Gun: Maverick is a 2022 American action drama film directed by Joseph Kosinski and written by Ehren Kruger, Eric Warren Singer, and Christopher McQuarrie. A sequel to the 1986 film Top Gun, Tom Cruise reprises his starring role as the naval aviator Maverick."

[Top, Gun, Maverick, is, a, 2022, American, action, drama, film, directed, by, Joseph, Kosinski, and, written, by, Ehren, Kruger, Eric, Warren, Singer, and, Christopher, McQuarrie, A, sequel, to, the, 1986, film, Top, Gun, Tom, Cruise, reprises, his, starring, role, as, the, naval, aviator, Maverick]

[Top, Gun, Maverick, 2022, American, action, drama, film, directed, Joseph, Kosinski, written, Ehren, Kruger, Eric, Warren, Singer, Christopher, McQuarrie, sequel, 1986, film, Top, Gun, Tom, Cruise, reprises, starring, role, naval, aviator, Maverick]

[top, gun, maverick, 2022, american, action, drama, film, direct, joseph, kosinski, writ, ehren, kruger, eric, warren, singer, christopher, mcquarri, sequel, 1986, film, top, gun, tom, cruise, reprais, starr, role, naval, aviator, maverick]

Tokenization

Removing Stop Words

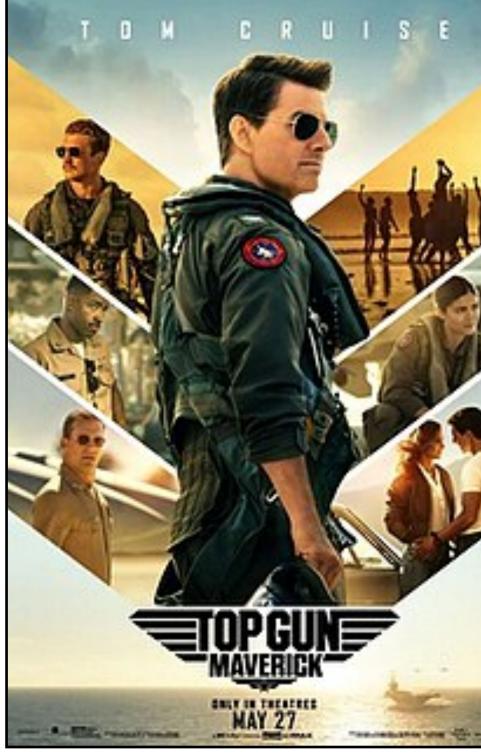
Stemming

Feature extraction (by data types)

 Structured metadata genres / categories / actors / release date / price / ...

• Free text description / plot / ...

 Visual images / videos

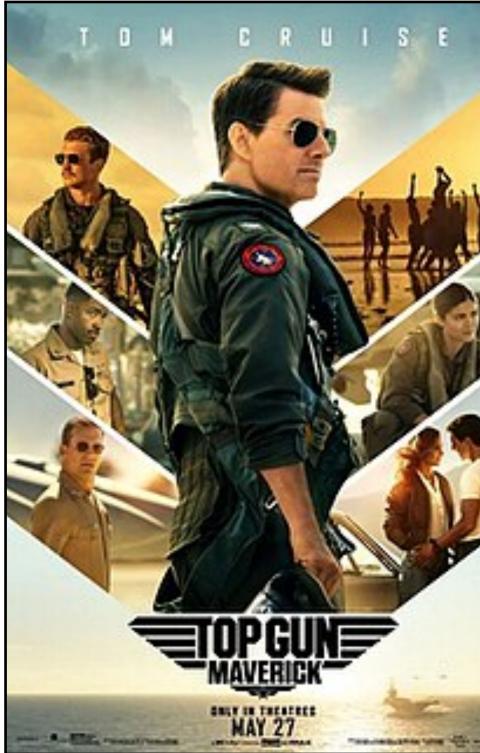


Convert to free text, then extract...

OK - so we have these features for Top Gun 2

[top, gun, maverick, 2022, american, action, drama, film, direct, joseph, kosinski, writ, ehren, kruger, eric, warren, singer, christopher, mcquarri, sequel, 1986, film, top, gun, tom, cruise, reprais, starr, role, naval, aviator, maverick]

What do we do next?



Vectorization

Converting tokens into numerical representations so they could be processed by ML

• BoW / TF-IDF simple and effective

 Embeddings complex models to build, but superior results, and (maybe) easier "inference"

Vectorization

Converting tokens into numerical representations so they could be processed by ML

• BoW / TF-IDF simple and effective

 Embeddings complex models to build, but superior results, and (maybe) easier "inference"

Can "handle" for typos like "tel-aviv" and "tel aviv"

Can also understand "meaning"

i want to eat an apple VS apple just released a new phone

BoW/TF-IDF

Reflect how important a word is to a document in a collection

 Create a dictionary of all words the space

* without word order

weight

action	1	X
drama	2	X
animated	3	
jordan	594	
cruise	595	X

id

Bag of Words

 Counts the number of appearances in the text If the data is structured - > 1

id	weight
1	1

action	1	1
drama	2	1
animated	3	
• • •		
jordan	594	
cruise	595	3

TF-IDF

• Term Frequency weight by the frequency in the document

 Inverse Document Frequency measures how common or rare a term is across all documents D in the corpus:

$$egin{aligned} ext{TF}(t,d) &= rac{f_{t,d}}{\sum_{t'\in d}f_{t',d}} \ ext{IDF}(t,D) &= \logigg(rac{N}{|\{d\in D:t\in d\}}igg) \end{aligned}$$

 $\text{TF-IDF}(t, d, D) = \text{TF}(t, d) \times \text{IDF}(t, D)$

	id	weight
action	1	1.42
drama	2	0.2
animated	3	
jordan	594	
cruise	595	9.23

TF-IDF - Notes What is the "size" of the vector?

TF-IDF - Notes

What is the "size" of the vector?

- the dictionary size —> high dimension
- But most values are unknown -> sparse data

 Requires exact text match "tel aviv" != "tel-aviv", "car" != "automobile"

Embeddings

mapped into a continuous vector space

Often generated using neural network models

or documents closer together in the embedding space

Dense vector representations where each feature is

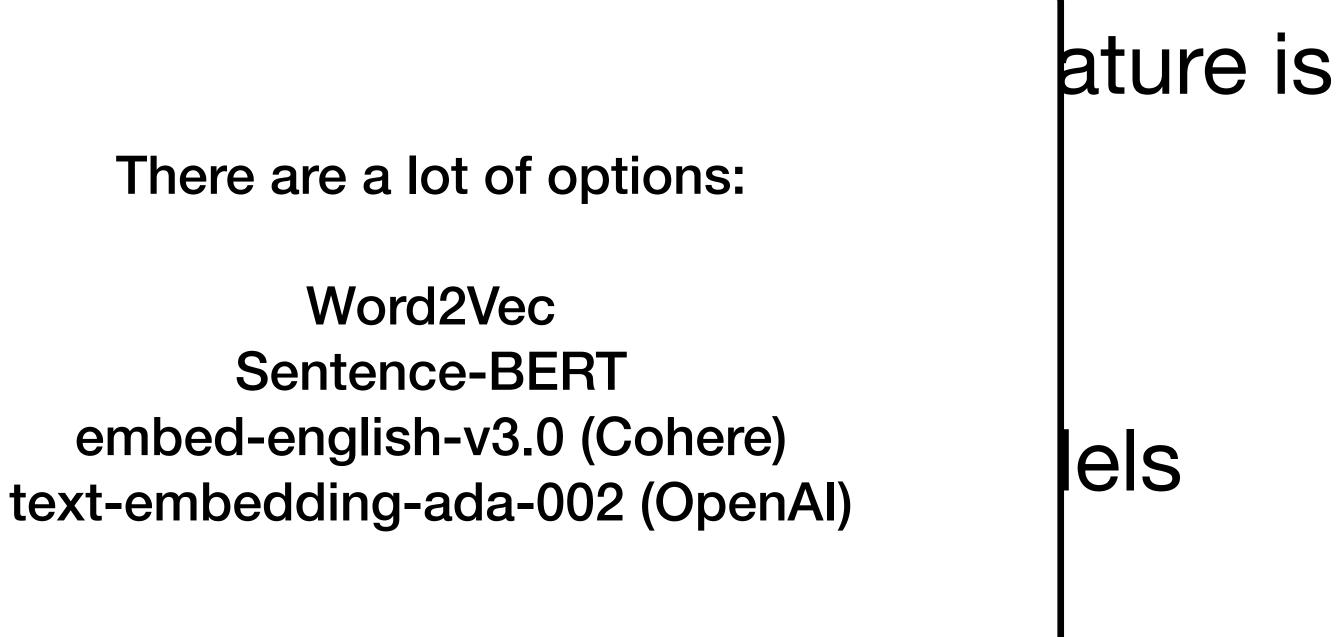
Capture semantic meaning by placing similar words

Embeddings

Dense vect mapped int

Often gen

or documents closer together in the embedding space



Capture semantic meaning by placing similar words

Embeddings - Notes

What is the "size" of the vector?

- A fixed (relatively small) size 300-2000 in most of today's models
- Most values are known -> dense

 Captures semantics "tel aviv" ~= "tel-aviv", "car" ~= "automobile"

TD-IDF vs Embeddings

Aspect	TF-IDF	Embeddings
Representation	Sparse, high-dimensional	Dense, low-dimensional
Interpretability	Highly interpretable (words are explicit)	Less interpretable (dimensions are abstract)
Semantic Capture	Limited semantic understanding	Rich semantic understanding
Computational Cost	Relatively low	Can be higher (especially during training)
Usage	Suitable for smaller datasets or when interpretability is key	Ideal for larger datasets and when capturing nuance is critical

Vectorization - DONE! We have a vector representation for each item

• What is the next move?

Cosine Similarity

Used to compare 2 vectors popular choice for TF-IDF and Embeddings

If the vectors point in the same direction (angle is 0°), the cosine similarity is 1, indicating maximum similarity

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \cdot \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

calculates the cosine of the angle between two vectors

Intro and Intuition

Content Based

Collaborative Filtering

Common challenges

Collaborative Filtering

Recommend based on the behavior and preferences of <u>other users</u>

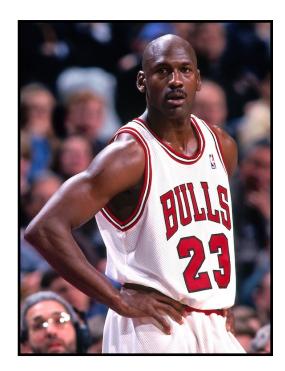
Memory based CF

- User-based CF
- Item-based CF

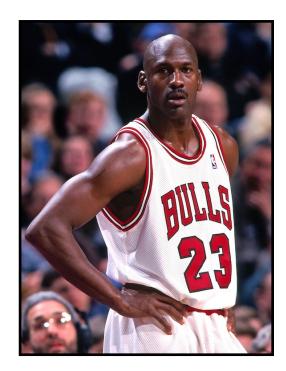
Model based CF

Matrix factorization

Items

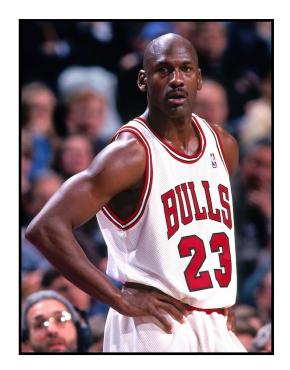


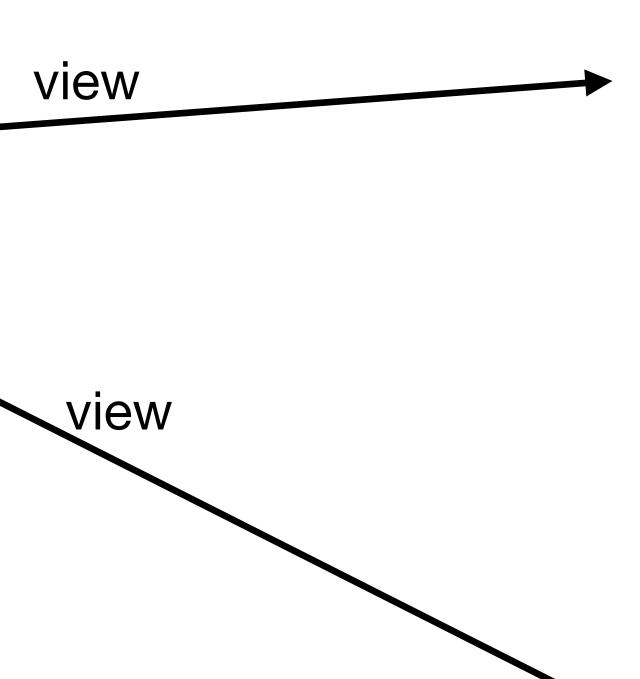
Items



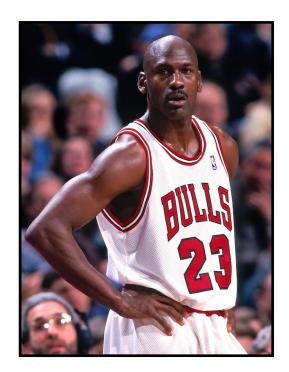
<text>

Items





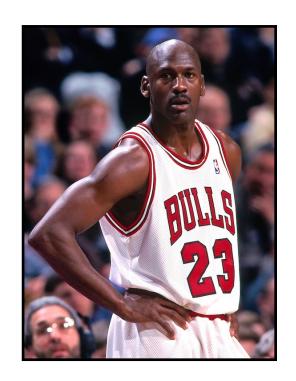
Items

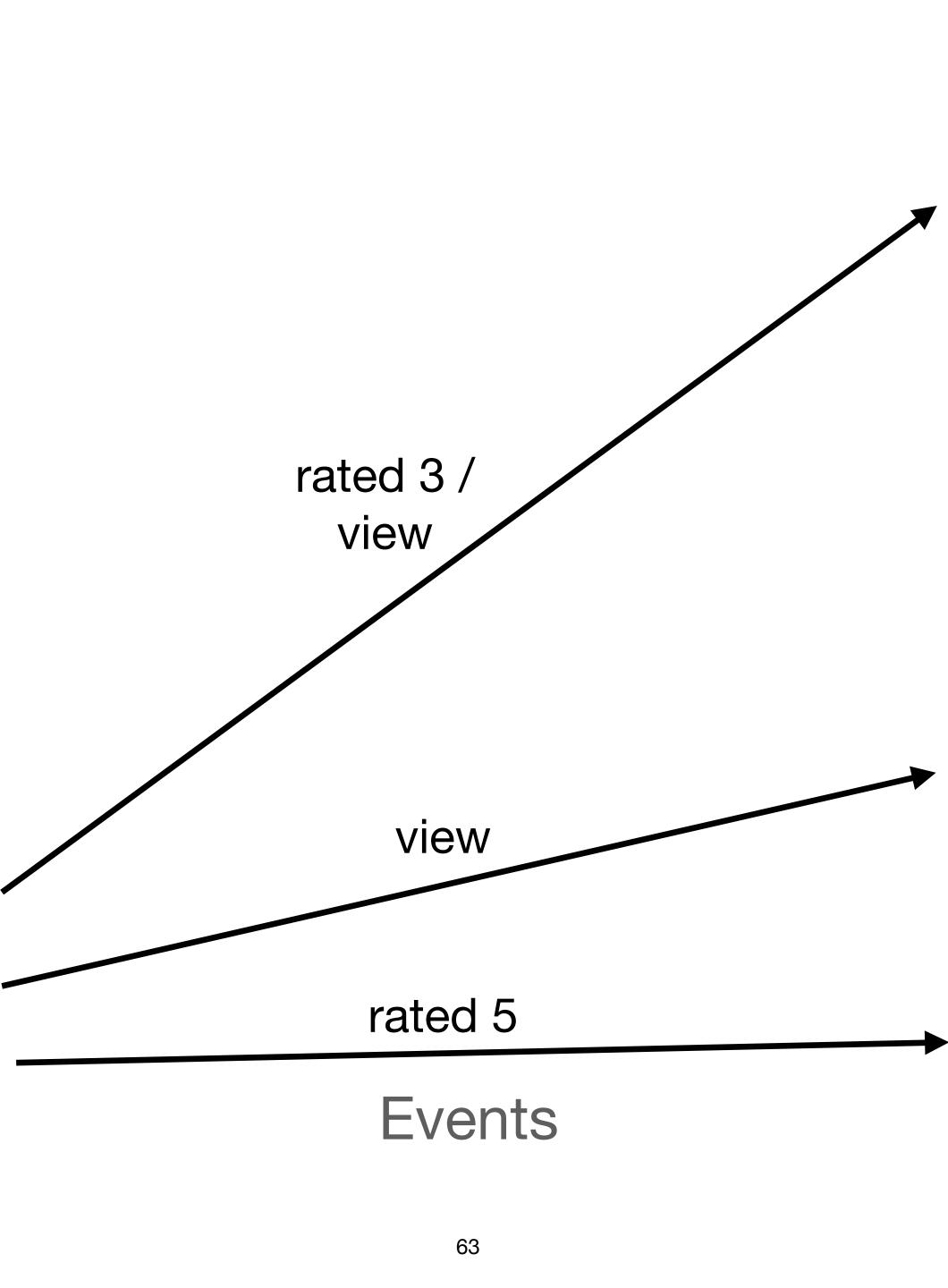


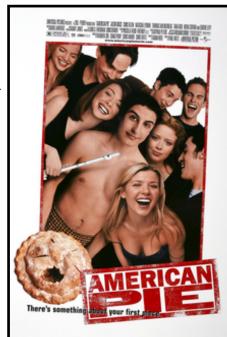
download

view

Items







Items

	51235	2312	5215	232	•••	987233	4124
3234	Х		X				
41232		X		Х		X	
			Х			X	
•••				Х			
•••							
••••		Х				X	
99283	Х		X			X	

Х		X			
	X		X	X	
		X		X	
			X		
	Х			Х	
Χ		X		Х	

. . .

. . .

. . .

. . .

. . .

. . .

. . .

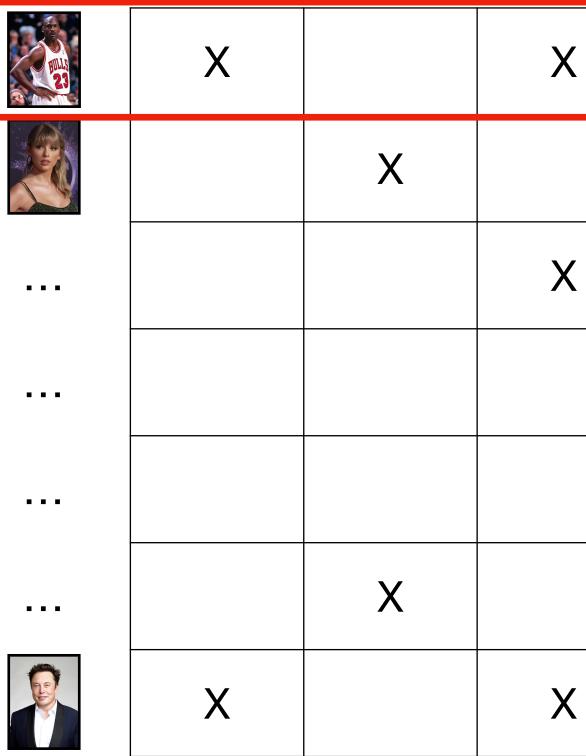
Х		X			
	Х		X	X	
		X		Х	
			Х		
	Х			Х	
Х		X		X	

Represents a single event - lets assume this is "VIEW" So Jordan viewed Moana 2 and Grown Ups

. . .

...

Represents a single event - lets assume this is "VIEW" So Jordan viewed Moana 2 and Grown Ups



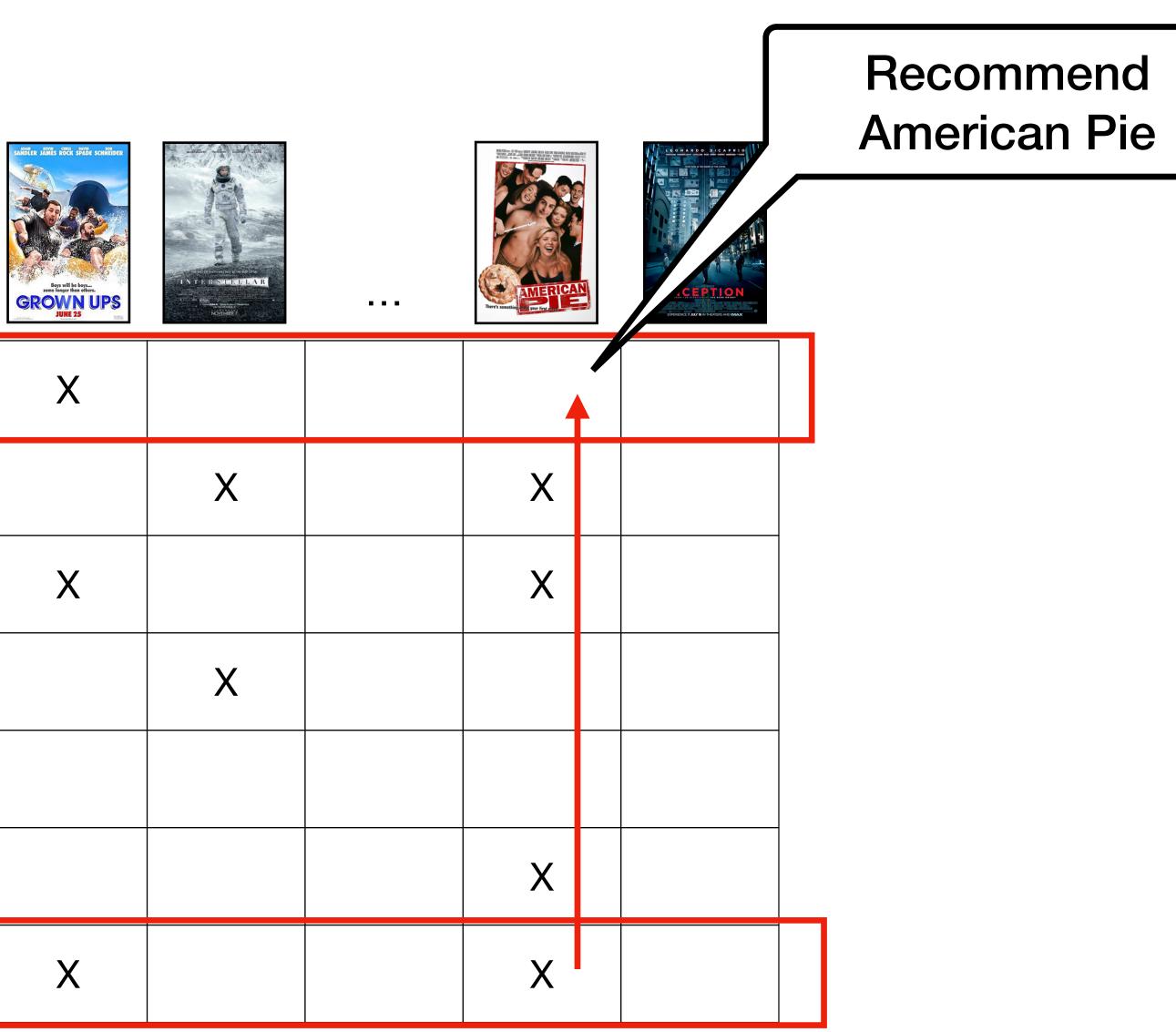
er UPSS			
	X	Х	
		Х	

	Х	
X		
	Х	
	Х	

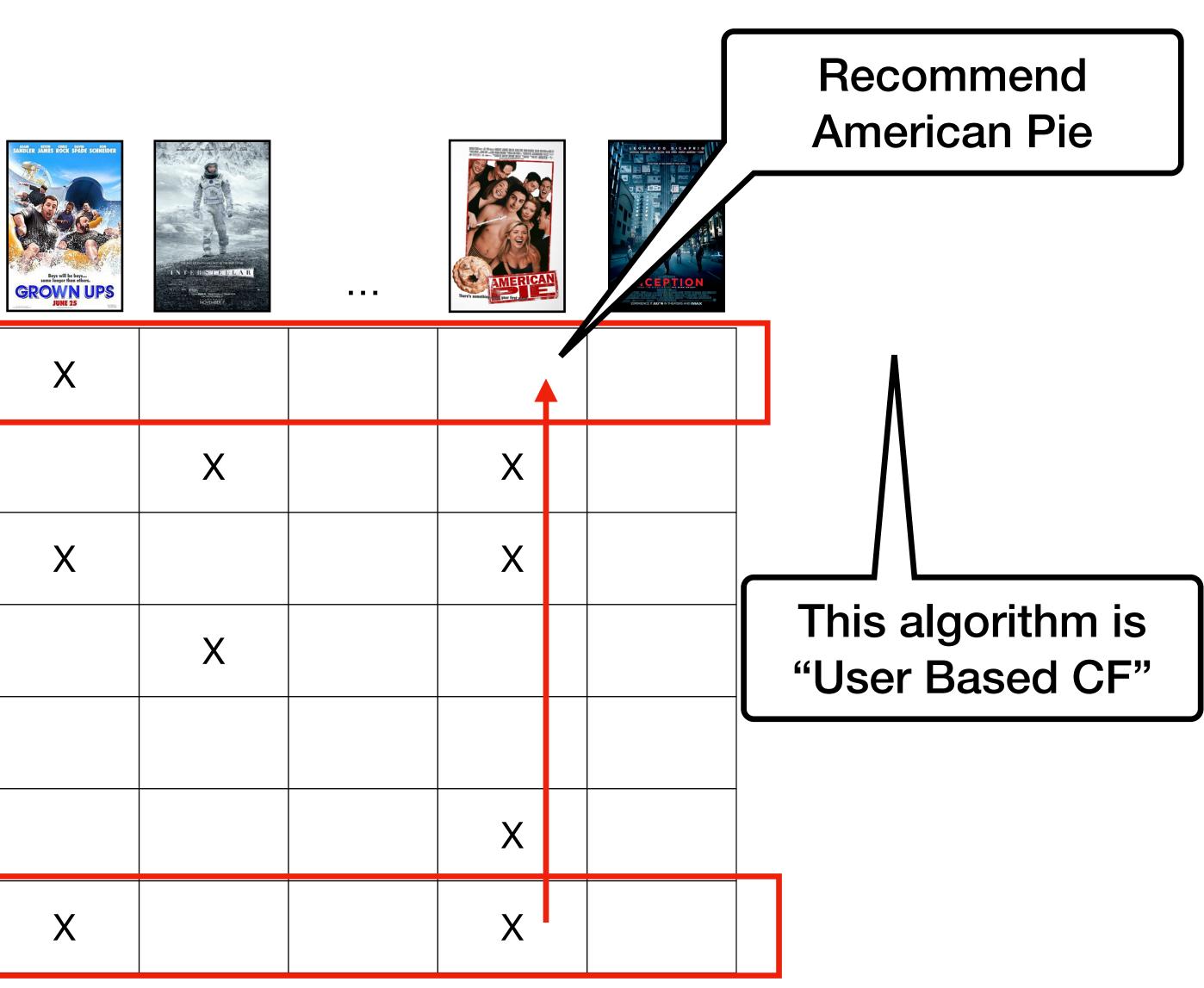
	Х		Х			
		Х		Х	Х	
•••			X		X	
				Х		
		Х			Х	
	Х		Х		Х	

ire schliftider	<text></text>		
	Х	Х	
		Х	

			<text></text>			
	Х		Х			
		Х		Х	Х	
			Х		X	
				Х		
•••						
		Х			Х	
	Х		Х		Х	



Х		Х
	Х	
		X
	Х	
Х		Х



Х		Х
	Х	
		X
	Х	
Х		Х

User-based CF

the preference for an item

Steps

- Similarity calculation calculates similarities with all other users (Cosine / Pearson / Jaccard ...)
- Neighborhood formation identify a set of similar users (neighbors)
- Prediction take a weighted average of the preference by the neighbors

The preferences of similar users (neighbors) can be used to predict

$$\hat{v}_{u,i} = rac{\sum_{v \in N(u)} s(u,v) imes v_{v,i}}{\sum_{v \in N(u)} s(u,v)}$$

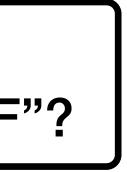
User-Item Matrix

<image/>					
Х		X			
	X		X	X	
		X		X	
X			X		
Х			X		
	X			X	
Х		X	X	X	
					So what is "Item Based (

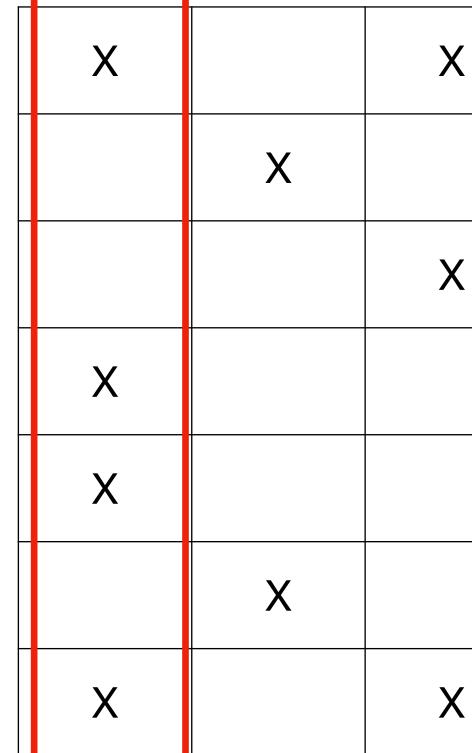
. . .

. . .

. . .



User-Item Matrix

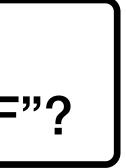


. . .

. . .

. . .

Х	X	
	X	
Х		
Х		
	X	
Х	X	So what is
		"Item Based CF



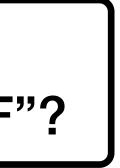
User-Item Matrix

Recommend Interstellar because you watched Moana 2

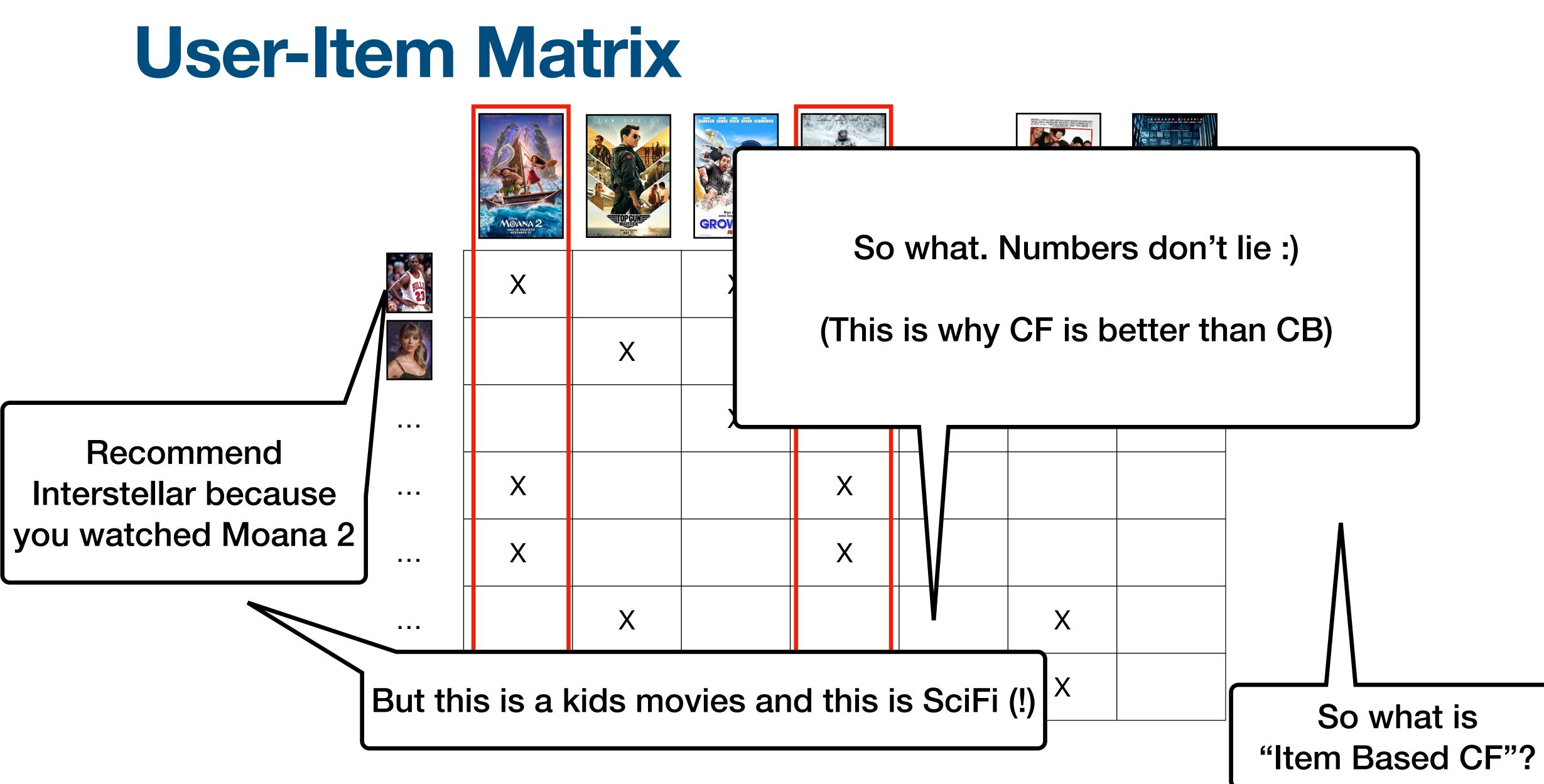
. . .

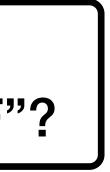
. . .

			x				
	ANA 2						
X	<		X				
		X		Х		X	
			X			X	
	<			Х			
	<			Х			
		X				X	
	<		Х	Х		X	So what is
		ŀ			· ·		So what is "Item Based CF"



User-Item Matrix GROWN UPS Х Х Х Х . . . Recommend Х Interstellar because . . . you watched Moana 2 Х . . . Х . . . But this is a kids movies and this is SciFi (!)





Item-based CF

like the other

Steps

- Similarity calculation calculates similarities with all other items (Cosine / Person / Jaccard ...)
- Neighborhood formation identify a set of similar items (neighbors)
- Prediction take a weighted average of the preference by the neighbors

If two items are "similar", then a user who liked one item will likely

$$\hat{v}_{u,i} = rac{\sum_{j \in N(i)} s(i,j) imes v_{u,j}}{\sum_{j \in N(i)} s(i,j)}$$

Item-based CF

like the other

Steps

- Similarity calculation calculates similarities with all other items (Cosine / Person / Jaccard ...)
- Neighborhood formation identify a set of similar items (neighbors)
- Prediction take a weighted average of the preference by the neighbors

If two items are "similar", then a user who liked one item will likely

Similarity is "different" for CB and CF

$$\hat{v}_{u,i} = rac{\sum_{j \in N(i)} s(i,j) imes v_{u,j}}{\sum_{j \in N(i)} s(i,j)}$$

User based vs Item-based

?

User based vs Item-based

TLDR;

Item based is preferred most times

$$\hat{v}_{u,i} = rac{\sum_{v \in N(u)} s(u,v) imes v_{v,i}}{\sum_{v \in N(u)} s(u,v)}$$
User based

$$\hat{v}_{u,i} = rac{\sum_{j \in N(i)} s(i,j) imes v_{u,j}}{\sum_{j \in N(i)} s(i,j)}$$
Item based

User based vs Item-based

Aspect	User-Based CF	Item-Based CF
Similarity Calculation	Between users	Between items
Scalability	More computationally intensive with many users	Typically more scalable due to fewer items
Stability	Can be volatile as user preferences change	Generally more stable since item properties change slowly
Data Sparsity	Can struggle when users have few interactions	Often more robust as items tend to accumulate more interactions
Recommendation Focus	Recommends based on similar users' behavior	Recommends items similar to those the user has engaged with



Collaborative Filtering

Memory based CF

- User-based CF
- Item-based CF

Model based CF

Matrix factorization

Recommend based on the behavior and preferences of other users

Reminder from a few slides ago...

One of the most popular techniques for CF

 A technique to discover latent factors that explain user-item interactions latent factors ~ hidden dimension ~ "embeddings"

two (or three) lower-dimensional matrices

Decomposes the <u>large</u>, <u>sparse</u> <u>user-item</u> <u>matrix</u> into

Х

Х

Х

Х

Х

S DE LE A B

Х

Х

Х

Х

Х

Х

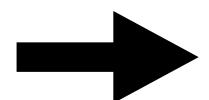
			0
	4)(5
	S P	<u>nlls</u>	2
		23	3
5.6	100	1114	2

.

...

Х

Original matrix R



Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

			0
	4)(5
	S P	<u>nlls</u>	2
		23	3
5.6	100	1114	2

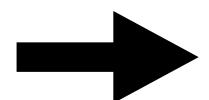
.

...

P

Х

Original matrix R



Intuition

We want to create 2 (or 3) matrixes that if we multiply them we will get the original matrix

Original matrix R

User features matrix

Latent space

.32	0.69	0.88	0.32
.84	0.35	0.51	0.32
••			
••			
•••			
••			
.25	0.32	0.44	0.24

*

	MOANA 2		AND			
space	0.23	0.12	0.3	0.66	 0.09	0.23
spa	0.43	0.33	0.12	0.24	 0.23	0.42
atent :	0.51	0.83	0.124	0.14	 0.34	0.51
_ate	0.98	0.15	0.82	0.92	 0.53	0.23

How can we get this value?

. . .

...

. . .

. . .

B

MAVERICK MAVERICK	GRO

X		Х			
	X		X	Х	
		X		Х	
			X		
	X			Х	
X		Х		Х	

Original matrix R

User features matrix

Latent space

.32	0.69	0.88	0.32
.84	0.35	0.51	0.32
••			
••			
•••			
•••			
.25	0.32	0.44	0.24

*

	MOANA 2		AND			
space	0.23	0.12	0.3	0.66	 0.09	0.23
spa	0.43	0.33	0.12	0.24	 0.23	0.42
atent :	0.51	0.83	0.124	0.14	 0.34	0.51
_ate	0.98	0.15	0.82	0.92	 0.53	0.23

How can we get this value?

. . .

. . .

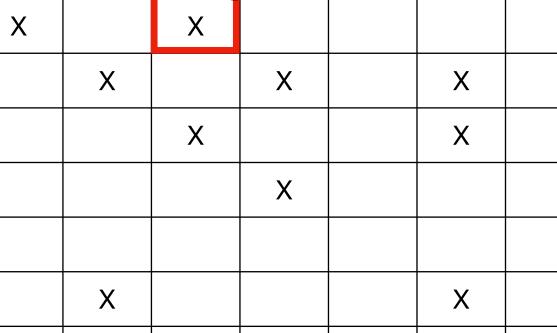
...

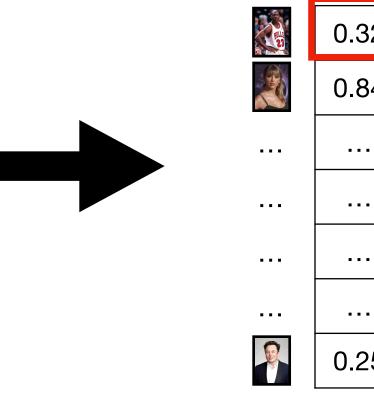
. . .

Х

		Insa ^T
	ân	5
		SX
OP CUN		Maana 2
OP CUN MARKED AN MARKED AN		A CARACTER STATES

Х





Original matrix R

Х

User features matrix

Latent space								
.32	0.69	0.88	0.32					
.84	0.35	0.51	0.32					
••	•••							
••	•••							
••	•••							
••	•••	•••	•••					
.25	0.32	0.44	0.24					

*

Meana 2 Obs in History Contraction 27	COP CUN	Ben will be ben. Res leader that when GROUND JUNE 25	TYPE RESIDE FAR		AMERICAN	INCEPTION
0.23	0.12	0.3	0.66		0.09	0.23
0.43	0.33	0.12	0.24		0.23	0.42
0.51	0.83	0.124	0.14		0.34	0.51
0.98	0.15	0.82	0.92		0.53	0.23
	0.43 0.51	0.23 0.12 0.43 0.33 0.51 0.83	0.23 0.12 0.3 0.43 0.33 0.12 0.51 0.83 0.124	0.23 0.12 0.3 0.66 0.43 0.33 0.12 0.24 0.51 0.83 0.124 0.14	0.23 0.12 0.3 0.66 0.43 0.33 0.12 0.24 0.51 0.83 0.124 0.14	0.23 0.12 0.3 0.66 0.09 0.43 0.33 0.12 0.24 0.23 0.51 0.83 0.124 0.14 0.34

Matrix Factorization - prediction

And how to can we get this value?

Х

Х

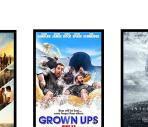
. . .

...

. . .

. . .

P



Х

Х

Х

Х

Х

Х

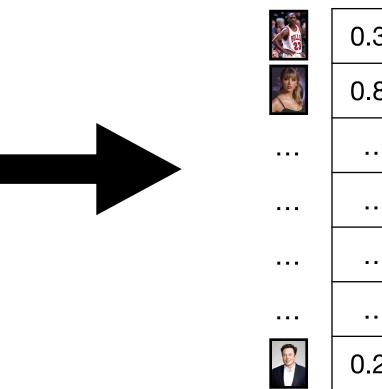
Х

Х

Х

Х

Х



Original matrix R User features matrix U

Latent space

.32	0.69	0.88	0.32
.84	0.35	0.51	0.32
••			•••
•••			
•••			
••			
.25	0.32	0.44	0.24

*

space	0.23	0.12	0.3	0.66	 0.09	0.23
sp	0.43	0.33	0.12	0.24	 0.23	0.42
atent	0.51	0.83	0.124	0.14	 0.34	0.51
_ate	0.98	0.15	0.82	0.92	 0.53	0.23

Matrix Factorization - prediction

Х

. . .

. . .

. . .

. . .

R

Х

Х

Х

Х

Х

Х

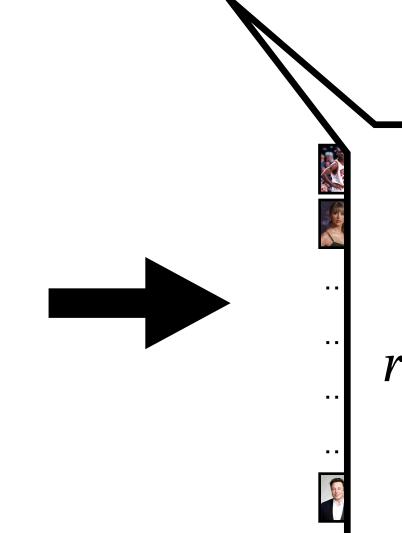
Х

Х

Х

Х

Х



Original matrix R

User features matrix U

Exactly the same..

ru,i is given by the dot product of their latent vectors the predicted rating / preference

Matrix Factorization - prediction

And how to can we get this value?

Х

Х

. . .

...

. . .

. . .

P

Х

Х

Х

Х

Х

Х

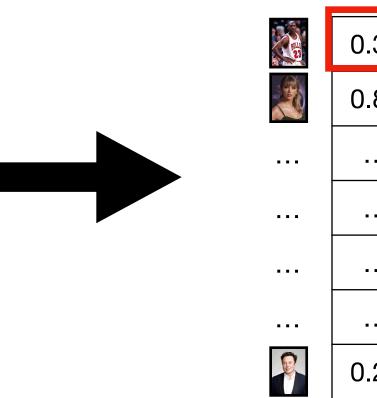
Х

Х

Х

Х

Х



Original matrix R

User features matrix U

$$\hat{r}_{ui} = \mathbf{u} \cdot \mathbf{v}$$

Latent space								
32	0.69	0.88	0.32					
84	0.35	0.51	0.32					
••								
••								
••								
••	•••	•••	•••					
25	0.32	0.44	0.24					

*

						INCEPTION
0.23	0.12	0.3	0.66		0.09	0.23
0.43	0.33	0.12	0.24		0.23	0.42
0.51	0.83	0.124	0.14		0.34	0.51
0.98	0.15	0.82	0.92		0.53	0.23
	0.23 0.43 0.51	0.23 0.12 0.43 0.33 0.51 0.83	0.23 0.12 0.3 0.43 0.33 0.12 0.51 0.83 0.124	0.23 0.12 0.3 0.66 0.43 0.33 0.12 0.24 0.51 0.83 0.124 0.14	0.23 0.12 0.3 0.66 0.43 0.33 0.12 0.24 0.51 0.83 0.124 0.14	0.23 0.12 0.3 0.66 0.09 0.43 0.33 0.12 0.24 0.23 0.51 0.83 0.124 0.14 0.34

And how to can we get this value?

Х

Х

. . .

. . .

. . .

. . .

R

Х

Х

Х

Х

Х

Х

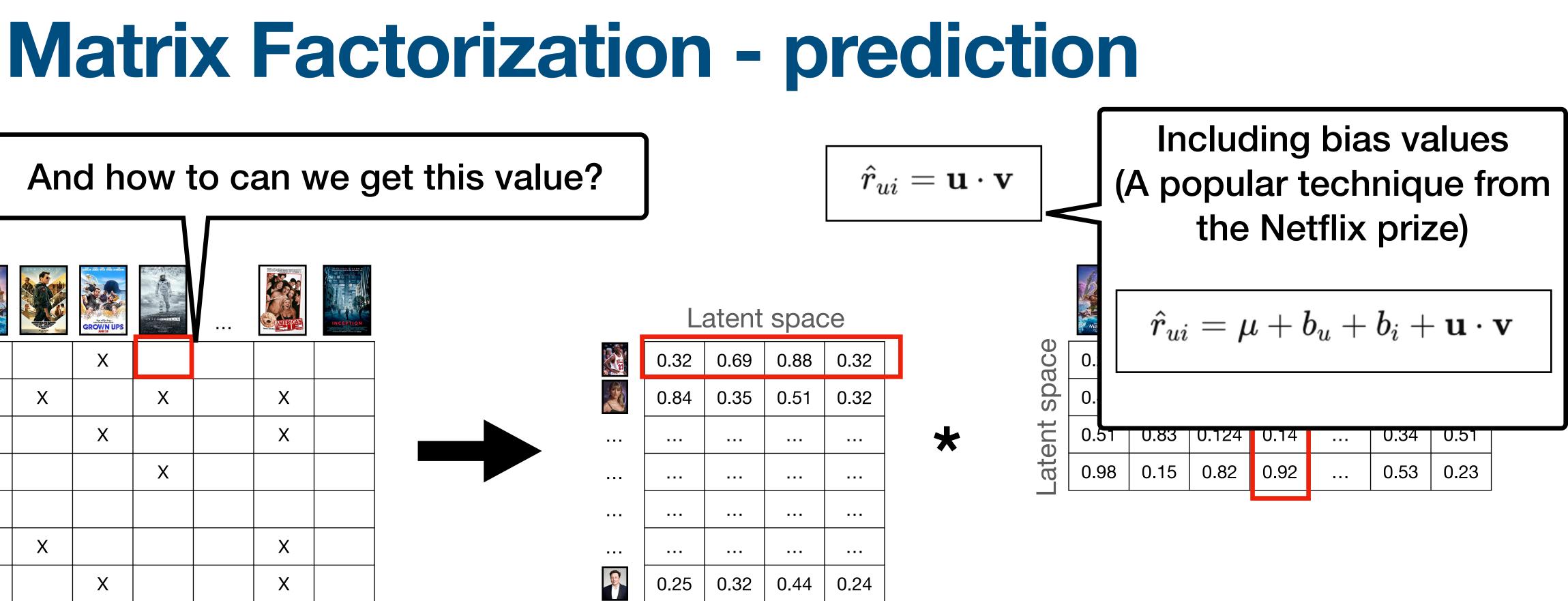
Х

Х

Х

Х

Х



Original matrix R

User features matrix

Matrix Factorization - techniques

- SVD Full decomposition using orthogonal matrices and singular values
- Funk SVD An optimization approach using gradient descent
- PMF

A probabilistic approach to factorization

• NMF

Ensures all elements are non-negative for interpretability

ALS

Alternates solving for user and item matrices using least squares

Intro and Intuition

Content Based

Collaborative Filtering

Common challenges

Implicit vs Explicit data

you liked what would you say?

If I asked you to explicitly provide 3 movies or artists

Implicit vs Explicit data

you liked what would you say?

You can think of a similar example for Woman :)

 Implicit capture your TRUE preference -> always works better :)

If I asked you to explicitly provide 3 movies or artists

is it "cool" to say Moana 2 or Taylor Swift if you are a grown man?

Implicit vs Explicit data If I asked you to explicit you liked what would y Click on something, view 50% of video, search, share, copy link, like... is it "cool" to say Moana 2 or

You can think of a similar exam

Implicit capture your TRUE prefle -> always works better :)

b for Woman :)

reflerence

sts

How much values are available?

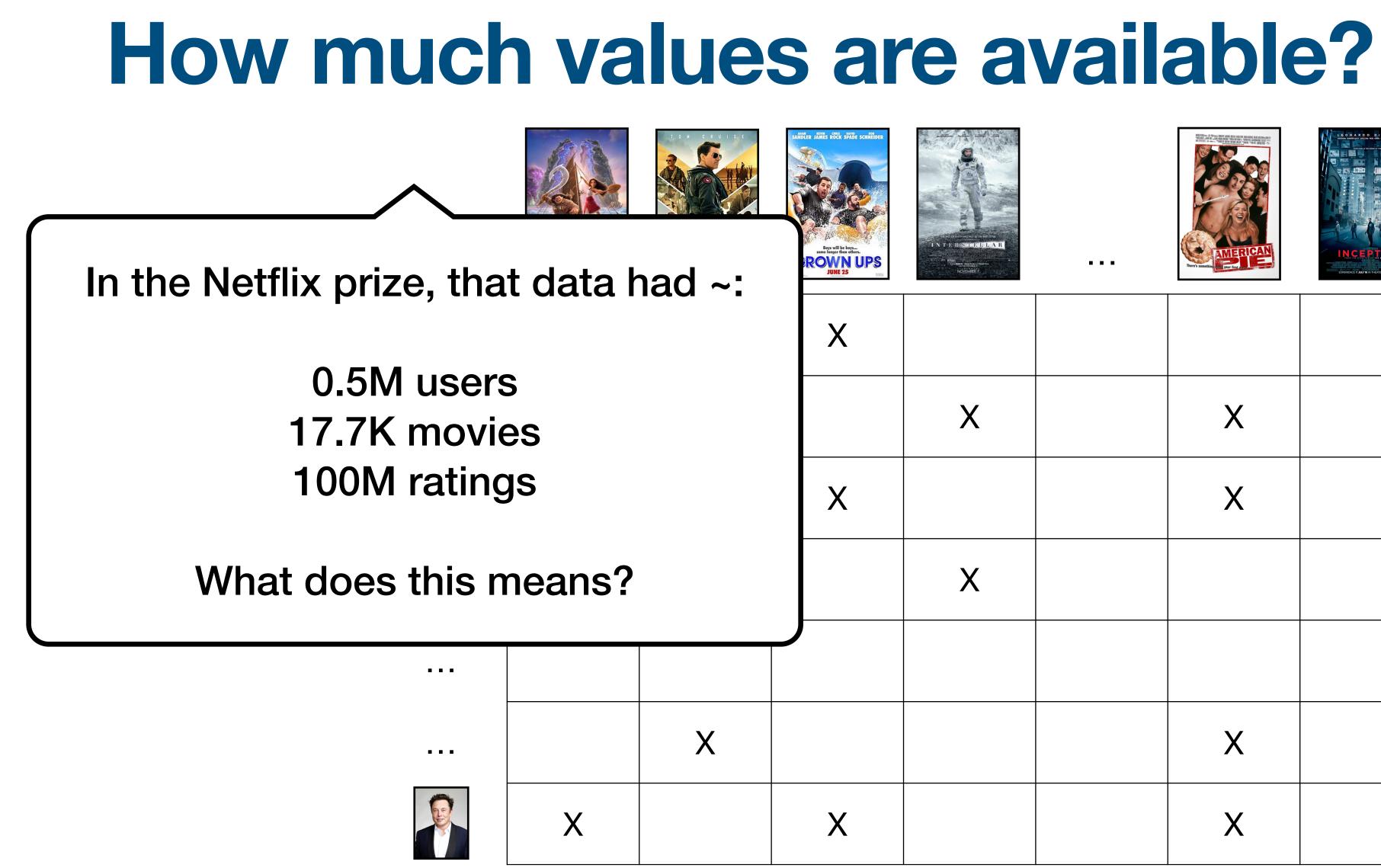
Х		X			
	X		X	X	
		X		X	
			Х		
	Х			Х	
Χ		X		Х	

. . .

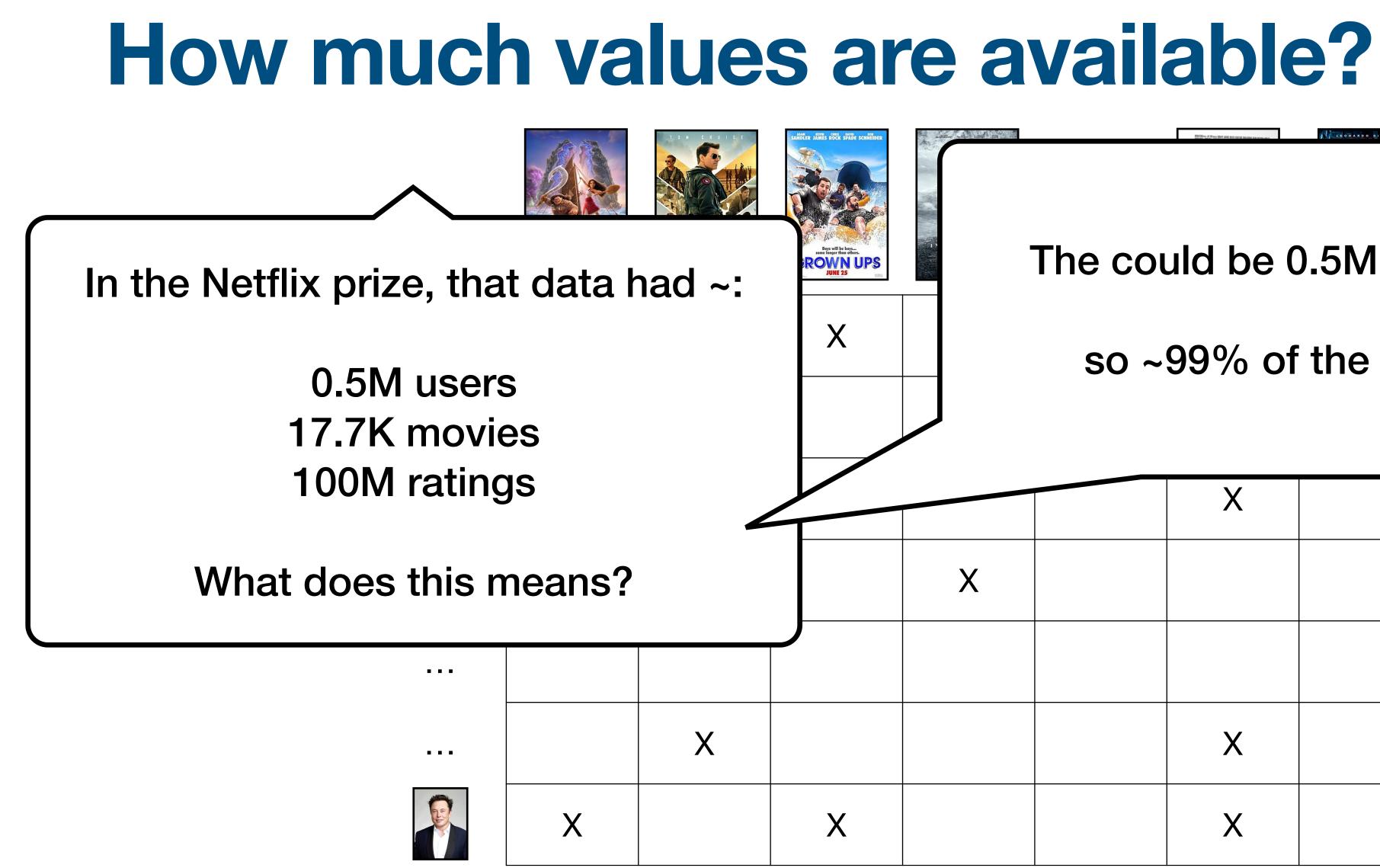
. . .

. . .

. . .



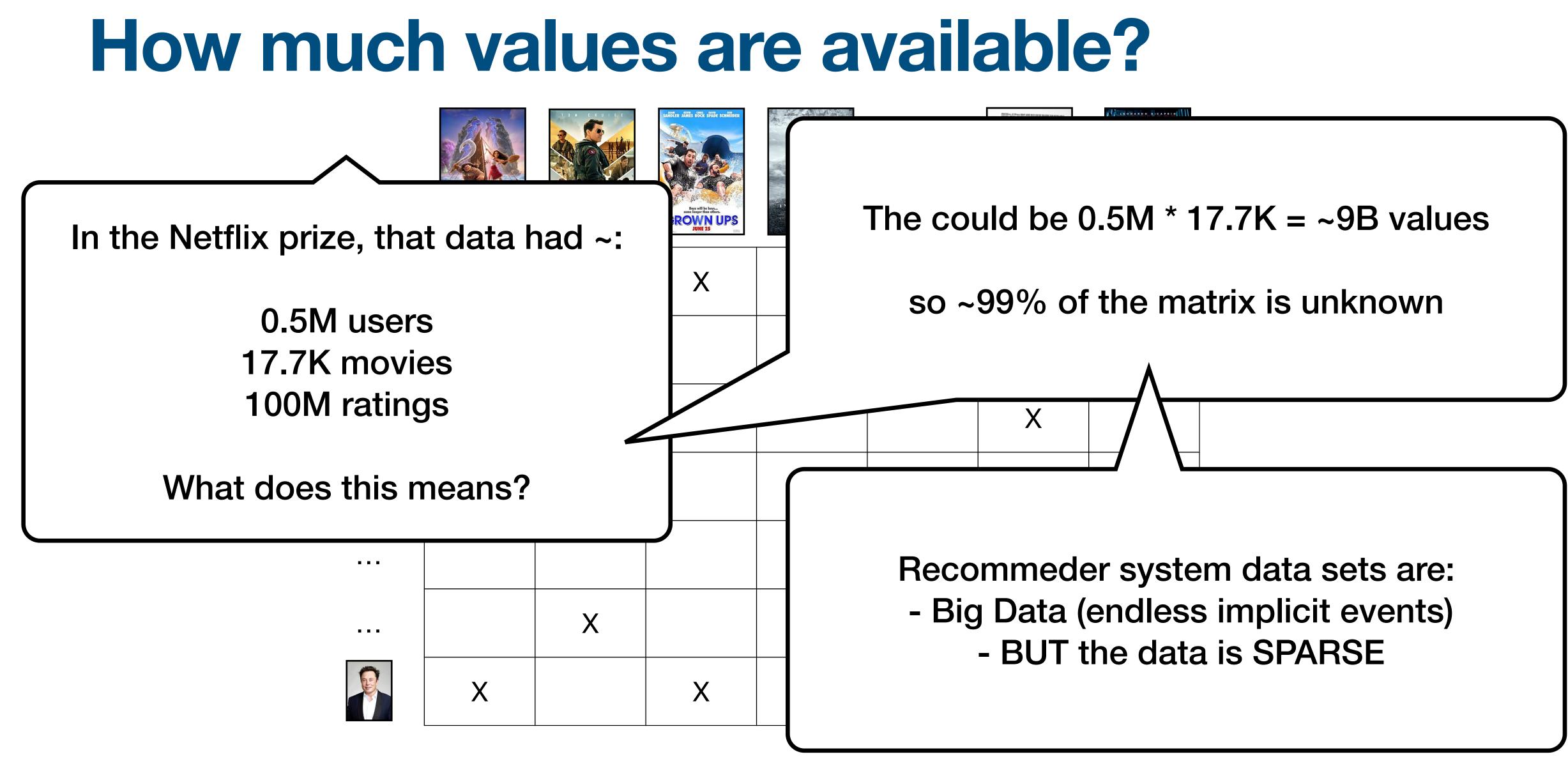
	Х	Х	
< label{eq:starter}		Х	
	Х		
		Х	
< label{eq:starter}		Х	

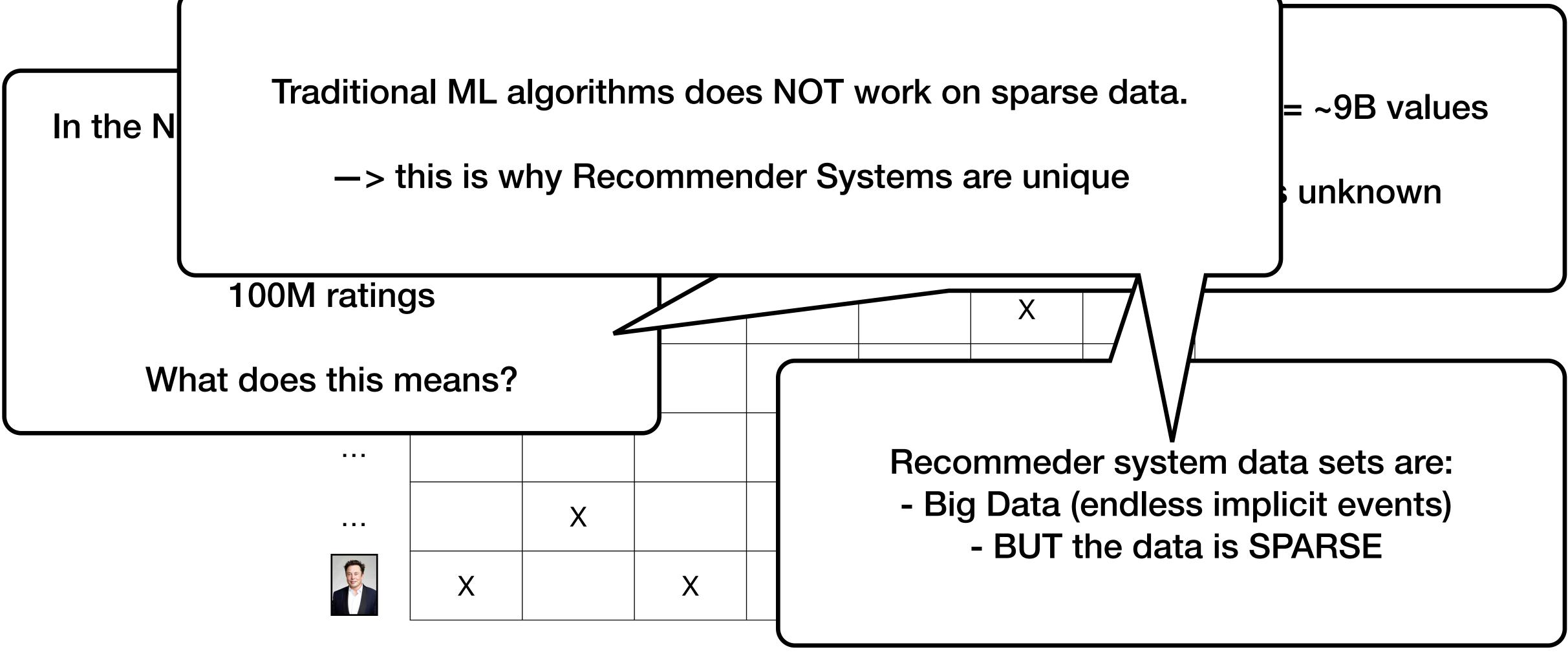


The could be $0.5M \times 17.7K = -9B$ values

so ~99% of the matrix is unknown

		Х	
	X		
		Х	
,		X	





• Can a matrix represent multi event data?

VIEW

• Can a matrix represent multi event data?

VIEW

				INCEPTION
			X	X
	Х			X
Х				
Х	Х			
		X		
Х	Х		X	Х

DOWNLOAD

• Can a matrix represent multi event data?

VIEW

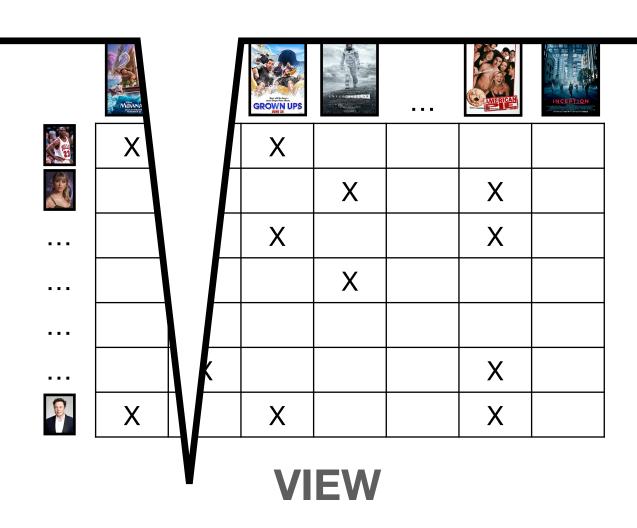
				INCEPTION
			X	X
	Х			X
Х				
Х	Х			
		Х		
Х	Х		X	X

DOWNLOAD

	MENA2					INCEPTION
			1			1
Æ	3	5				
			2			
					5	
				4		
		2				
Ų		4		3		5

RATING (1-5)

There are techniques to "blend" or "merge" - for example, add 1 for "view" 2 for "share", -1 for "dislike"...



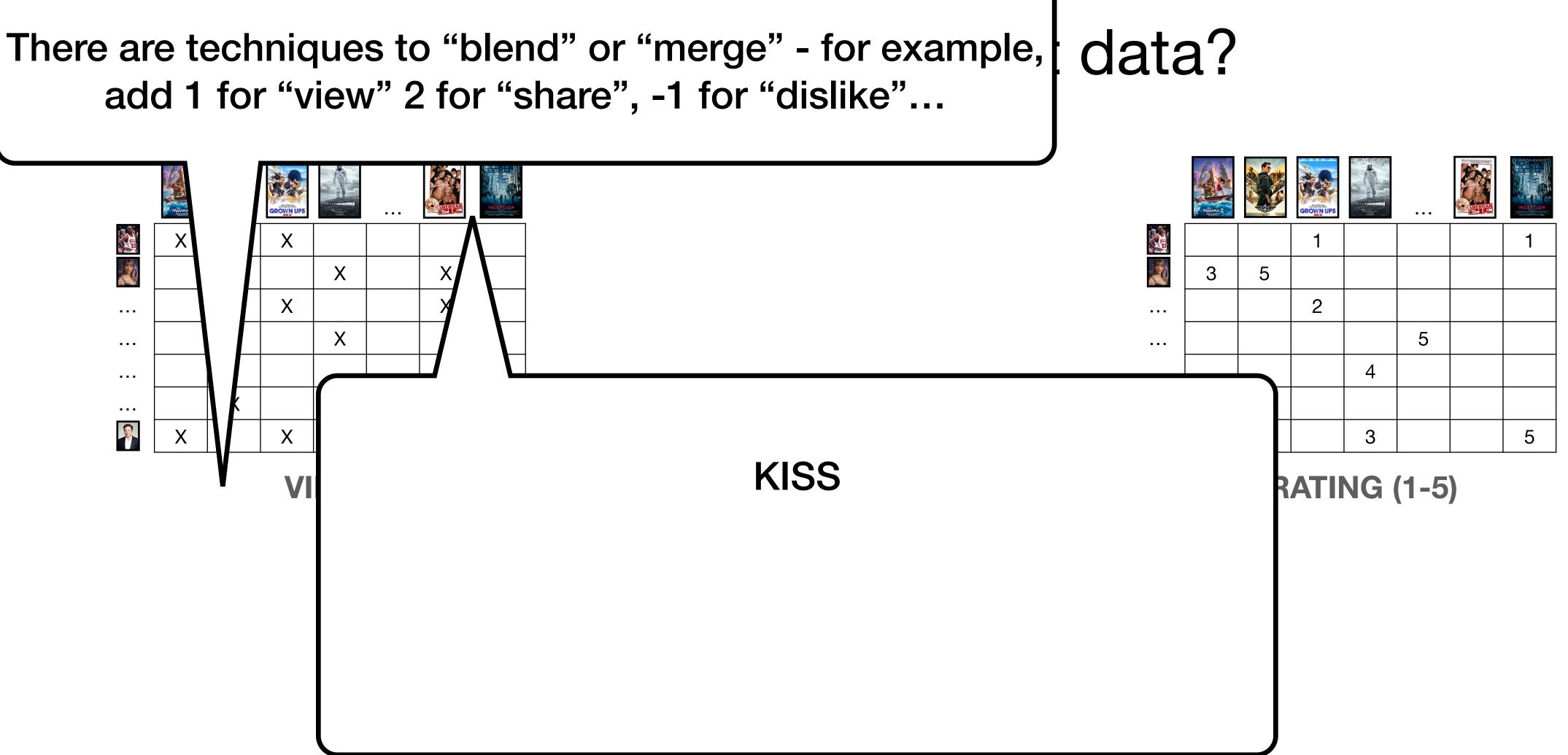
data?

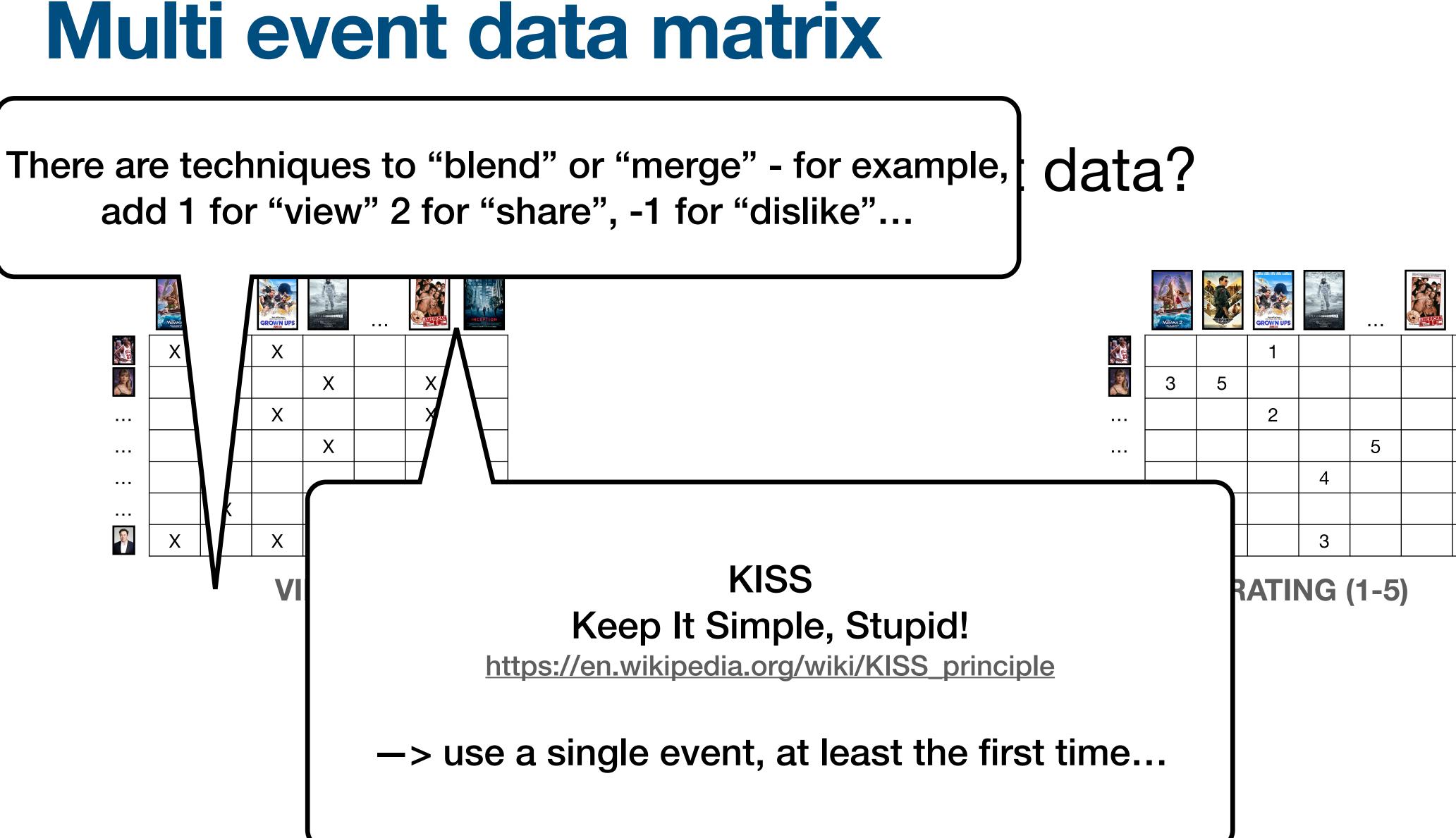
			X	Х
	Х			X
Х				
Х	Х			
		Х		
Х	Х		X	X

DOWNLOAD

	MENA2					INCEPTION
			1			1
R	3	5				
			2			
					5	
				4		
		2				
F		4		3		5

RATING (1-5)





Coldstart

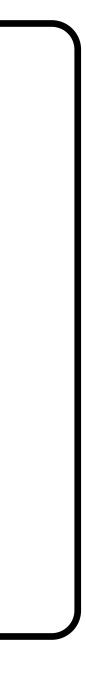
Ok - implicit data is better. So what to do when a "new" user enters the system?

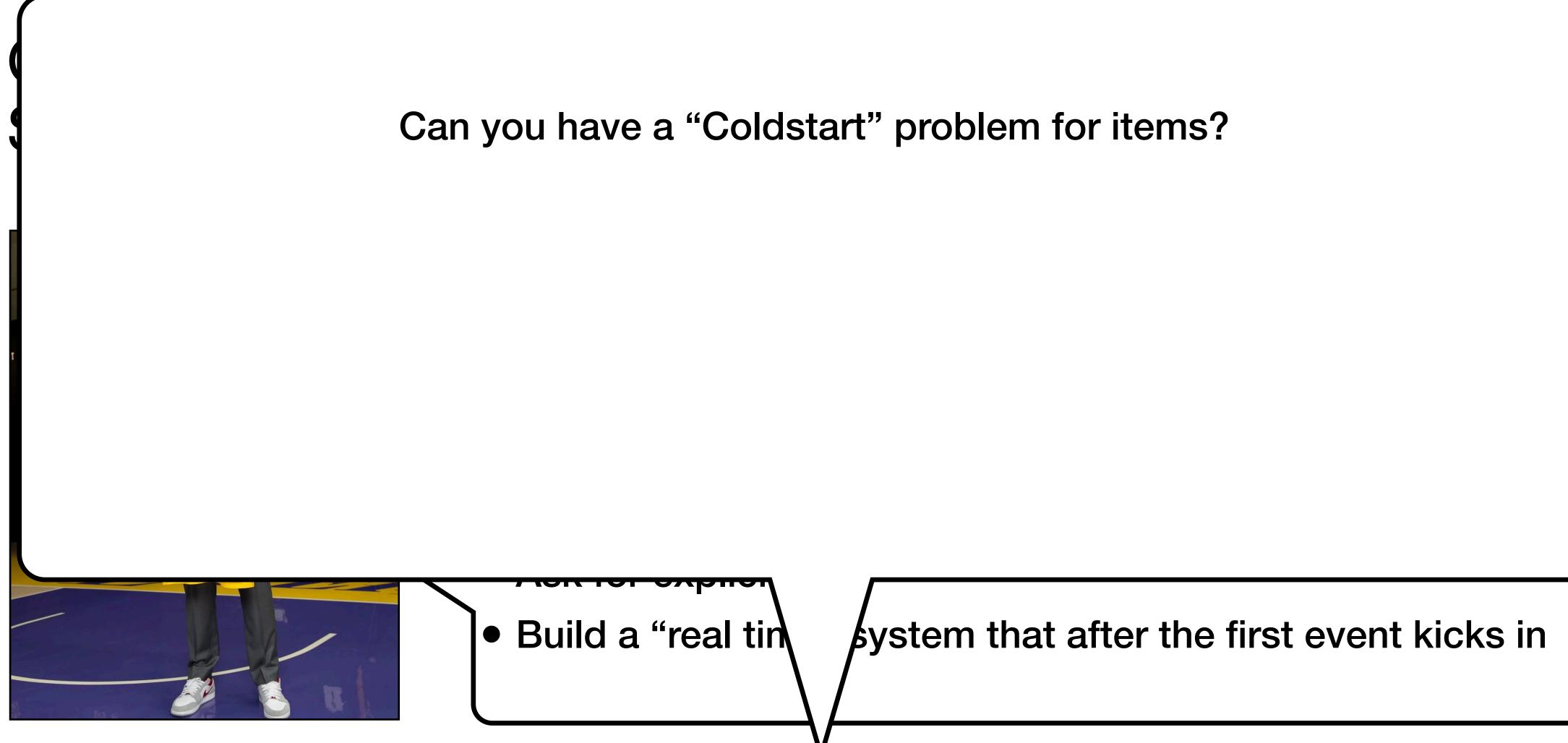
Coldstart

Ok - implicit data is better. So what to do when a "new" user enters the system?

For CF, not too much by definition...

- Show average
- Use semantics if available (location, gender, age..)
- Ask for explicit data
- Build a "real time" system that after the first event kicks in



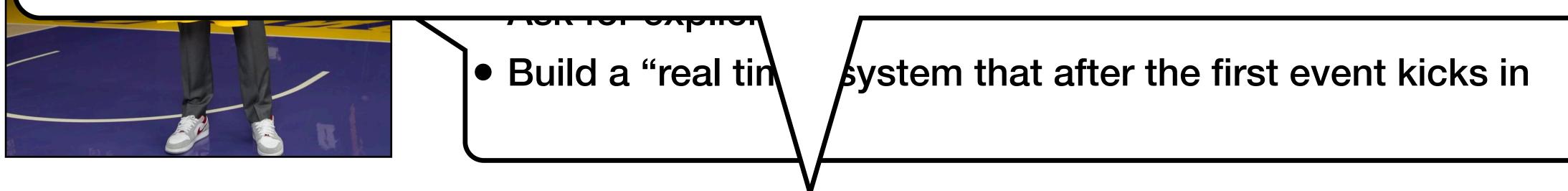


Can you have a "Coldstart" problem for items?

YES - IT IS EVEN A BIGGER PROBLEM!

(Because you need to "retrain" your ML model)

Possible outcome: the new item would not get recommender to any user





Diversity

Diversity

