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Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some cows, E-I-E-I-O
With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some dogs, E-I-E-I-O
With a woof-woof here and a woof-woof there

Here a woof there a woof
Everywhere a woof-woof

With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O



Requirements:

In Old MacDonald's farm you can find: dogs, cows, pigs, chicks and horses. In this
exercise you will write an application that receives as input a list of animals in old
MacDonald's farm (with possible repetitions). The application prints:

1. The list of animals in old MacDonald's farm with their sounds. The order of the
animals in this list is exactly the order in the input list.
For example: for the input “cow pig chick chick cow" the output is

COW: mMOO
pig: oink
chick: cluck
chick: cluck
COW: mMOO

2. The status of old MacDonald's farm: a two column table where the first column
contains animal names (no repetitions!) in alphabetical order and the second column
contains the number of animals of this type in old MacDonald's farm.

For example: for the input "cow pig chick chick cow" the output is:

Animal Count
chick 2
cCow 2
pig 1

3. The "old MacDonald's had a farm song for the animals in the farm. Revise the
song to describe only the animals currently in the farm. For every animal type the
line "And on his farm he had some ..." appears exactly once, the song then continues
repeating previous types. The order of appearance of the animal types in the song is
the order of appearance in the input list.

For example: for the input "cow pig chick chick cow" the output is:

0ld MacDonald had a farm, E-I-E-I-O

And on his farm he had some cows, E-I-E-I-0
With a moo-moo here and a moo-moo there
Here a moo there a moo

Everywhere a moo-moo

0ld MacDonald had a farm, E-I-E-I-O

O0ld MacDonald had a farm, E-I-E-I-0O

And on his farm he had some pigs, E-I-E-I-0O
With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there



Here a moo there a moo
Everywhere a moo-moo
0ld MacDonald had a farm, E-I-E-I-O

0Old MacbDonald had a farm, E-I-E-I-0

And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck

With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo

Everywhere a moo-moo

0Old MacbDonald had a farm, E-I-E-I-0

Design:

A schematic description of the interfaces, classes and methods (details might differ
slightly from the code).
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Resources:

A skeleton for the application was implemented for you and you can download the files
from the web site. Some of the classes have a complete implementation and should not be
altered. Others are missing some implementation details and it is up to you to add those.

You should not change the signature of public methods, but you may add private methods
and fields as you see fit.

Your implementation should rely on classes from the collections framework (Set, List,
Map, ...). Read the documentation for the various classes and choose the ones you find
most suitable for the implementation.

Fully implemented classes: The interface Animal and the classes implementing it (Pig,
Cow, Horse, Chick and Dog) all belong to the package
il.ac.tau.swl.oldmac.animals.

The class Main (not shown in the diagram) is the entry point to the application (i.e. its

main method should be used). Main and all the classes in il.ac.tau.swl.oldmac.animals
are implemented and should not be altered.

What you should implement:

Complete the implementation of the classes Farm, FarmBuilder and Song in the
package il.ac.tau.swl.oldmac as described below.

FarmBuilder class:

Builds a Farm object out of a list of animals. Implements a single method:

e public static Farm buildFarm(String[] animalNames)

The method receives a list of animal types then returns a new Farm populated with those
animals.

Farm class:
Represents a farm. implements the following methods:
e public void addAnimal (Animal animal)

Adds a new animal to the farm.



e public Iterator<Animal> iterator()

Returns an iterator over all the animals in the farm. The order is the same as the
order in which the animals were inserted to the farm.

e public Iterator<Animal> iteratorUnique ()

Returns an iterator over all the animals in the farm without repetitions. The
iterator iterates over the animals in the farm by the order of their addition to the
farm. For example, if the animals added to the farm were: cow, pig, chick, chick,
cow (in this order), then the order of iteration is cow, pig, chick.

e public void printStatus/()
Prints the status of the farm as described in the second requirement.

Song class:

e public static void printSong(Farm farm)

Prints the "Old MacDonald had a farm™ song as described in the third
requirement.

You may add any methods and fields as you deem necessary to those three classes. In
your implementation you should use classes (and interfaces) from the Java Collection
Framework.

You may assume that:

e The list of arguments to the application is not empty and that every argument is one
of the following: "cow", "chick", "horse", "dog" or "pig".
e The method Iterator.remove() is never called for the two iterators of class Farm.
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package il.ac.tau.cs.swl.simplesearch;

import java.util.Collection;
import java.util.List;

public interface WordIndex ({

Add the words originating in the specified URL.

@param words

- collection of words to add to the index
@param strURL

- the location of the page containing the words

void index(Collection<String> words, String strURL);

/**
* Search for a given word in the index

@param word
- the word to search
@Qreturn A list of pages containing the word. The pages are
ordered according to the relative importance of
the word within them.

* %k ok X % %

*/
List<String> search(String word) ;
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public class Main {
public static void main(String[] args) {
SimpleSearchEngine searchEngine =
new SimpleSearchEngine (new MyWordIndex()) ;
searchEngine.run() ;
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> java

1 http://www.java.com/en/

2. http://en.wikipedia.org/wiki/Java (programming language)

3 http://en.wikipedia.org/wiki/Java

4 http://www.gutenberg.org/files/27152/27152-h/27152-h.htm
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