1 N9
7 9901 YN

$ MDY MININ

LDOMPN NN N8N GWUN DIDNINN NWIN OO NP INPYAINIP @
.(http://virtual2002.tau.ac.il/) 1a5a Virtual TAU n no9yna nwyn 5% Inn nwan - e
NIPY ZVainer wnnwnn M1y, NNHTY) WHunwnn DY IR XYNN TN ZIPp YIp vino v e
999> Zip N 2P (Zvainer.zip N2pn
D25V MNTN .3.1 1901m) DNV NN 9onn details.txt owa o»ewN oV XIP N
.UNNY DNVYPAND DMN NIDNN DV java N osap .2
java noxap Y5 Hv pnyn By LOPL NP)

P30 TONTPN DY INNN !N PON

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some cows, E-I-E-I-O
With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some dogs, E-I-E-I-O
With a woof-woof here and a woof-woof there

Here a woof there a woof
Everywhere a woof-woof

With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Requirements:

In Old MacDonald's farm you can find: dogs, cows, pigs, chicks and horses. In this
exercise you will write an application that receives as input a list of animals in old
MacDonald's farm (with possible repetitions). The application prints:

1. The list of animals in old MacDonald's farm with their sounds. The order of the
animals in this list is exactly the order in the input list.
For example: for the input “cow pig chick chick cow" the output is

COW: mMOO
pig: oink
chick: cluck
chick: cluck
COW: mMOO

2. The status of old MacDonald's farm: a two column table where the first column
contains animal names (no repetitions!) in alphabetical order and the second column
contains the number of animals of this type in old MacDonald's farm.

For example: for the input "cow pig chick chick cow" the output is:

Animal Count
chick 2
cCow 2
pig 1

3. The "old MacDonald's had a farm song for the animals in the farm. Revise the
song to describe only the animals currently in the farm. For every animal type the
line "And on his farm he had some ..." appears exactly once, the song then continues
repeating previous types. The order of appearance of the animal types in the song is
the order of appearance in the input list.

For example: for the input "cow pig chick chick cow" the output is:

0ld MacDonald had a farm, E-I-E-I-O

And on his farm he had some cows, E-I-E-I-0
With a moo-moo here and a moo-moo there
Here a moo there a moo

Everywhere a moo-moo

0ld MacDonald had a farm, E-I-E-I-O

O0ld MacDonald had a farm, E-I-E-I-0O

And on his farm he had some pigs, E-I-E-I-0O
With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo
Everywhere a moo-moo
0ld MacDonald had a farm, E-I-E-I-O

0Old MacbDonald had a farm, E-I-E-I-0

And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck

With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo

Everywhere a moo-moo

0Old MacbDonald had a farm, E-I-E-I-0

Design:

A schematic description of the interfaces, classes and methods (details might differ
slightly from the code).

<=Interface==
TAnimal

—/__/\:7 ¥gethame() : String
¥getsound? : String

Bsle
®clone () : [ARimal
IR

Cow
= Song
Horse \\' ForintSong(farm : Farm) © void
\ Farm
Chick | ™. AN
Raddarimal(anima : TAnimad) : void
NN ‘i?:eratgripf F?QéTatordEﬁmé:»ml
- . \ \ \\ ‘iteraton,lniqueo : Iterator<IAnimal=
Fig SN N W Sprintstatus() @ veid
AN A
NN |
SN
NN
RN

FarrBLilder

¥uildrarminames : string[T) : Farm

Resources:

A skeleton for the application was implemented for you and you can download the files
from the web site. Some of the classes have a complete implementation and should not be
altered. Others are missing some implementation details and it is up to you to add those.

You should not change the signature of public methods, but you may add private methods
and fields as you see fit.

Your implementation should rely on classes from the collections framework (Set, List,
Map, ...). Read the documentation for the various classes and choose the ones you find
most suitable for the implementation.

Fully implemented classes: The interface Animal and the classes implementing it (Pig,
Cow, Horse, Chick and Dog) all belong to the package
il.ac.tau.swl.oldmac.animals.

The class Main (not shown in the diagram) is the entry point to the application (i.e. its

main method should be used). Main and all the classes in il.ac.tau.swl.oldmac.animals
are implemented and should not be altered.

What you should implement:

Complete the implementation of the classes Farm, FarmBuilder and Song in the
package il.ac.tau.swl.oldmac as described below.

FarmBuilder class:

Builds a Farm object out of a list of animals. Implements a single method:

e public static Farm buildFarm(String[] animalNames)

The method receives a list of animal types then returns a new Farm populated with those
animals.

Farm class:
Represents a farm. implements the following methods:
e public void addAnimal (Animal animal)

Adds a new animal to the farm.

e public Iterator<Animal> iterator()

Returns an iterator over all the animals in the farm. The order is the same as the
order in which the animals were inserted to the farm.

e public Iterator<Animal> iteratorUnique ()

Returns an iterator over all the animals in the farm without repetitions. The
iterator iterates over the animals in the farm by the order of their addition to the
farm. For example, if the animals added to the farm were: cow, pig, chick, chick,
cow (in this order), then the order of iteration is cow, pig, chick.

e public void printStatus/()
Prints the status of the farm as described in the second requirement.

Song class:

e public static void printSong(Farm farm)

Prints the "Old MacDonald had a farm™ song as described in the third
requirement.

You may add any methods and fields as you deem necessary to those three classes. In
your implementation you should use classes (and interfaces) from the Java Collection
Framework.

You may assume that:

e The list of arguments to the application is not empty and that every argument is one
of the following: "cow", "chick", "horse", "dog" or "pig".
e The method Iterator.remove() is never called for the two iterators of class Farm.

YNIN WON a2 PHN

DOINT DN DINAY 12NII 11D TIPNN DIPIN VIV YIDN YN WHND DIWITI DNX NT PIN2
.DPN NN NTIND

PN 0T .NYINN RIP> XN OMX HTML »a7 S 030181 99012 S0 DY WD NN YN

IN PDINY YN 1IN DX .SearchEngine nponna nmywan NX NISNY 19990 .WRIND DD
.DOWNNYN DNN DN D9TN NN NIYH

VT2 ©9IY 1Y PON P9 9TaV LOPLN PONY P NN NYINY HTML 97 1IN INxD

7PN navw SearchEngine nponnn qona .HTMLTokenizer npbnna 05912y wnmn 9315 Mt Tip
AT OGN NP WNRNWNRN DY IWPNNI NOIWNN NN DIV

VWYY DYDY NN

DT OPTYIN DY INVP . AYINND NTNNY DTN D2 WNNY D01 DI HY DPTINR NN NN
DYA NPONN WNNY DDY . NNNDN NDMI NAY DIVIN YNID TN ININD DD TVAN?

, D201 OPTYNR NN NI 1 NP WordIndex pwinn nx nwnnnn MyWordindex
2 WIDNY DPTIND DXDND NODIN NIVONND

package il.ac.tau.cs.swl.simplesearch;

import java.util.Collection;
import java.util.List;

public interface WordIndex ({

Add the words originating in the specified URL.

@param words

- collection of words to add to the index
@param strURL

- the location of the page containing the words

void index(Collection<String> words, String strURL);

/**
* Search for a given word in the index

@param word
- the word to search
@Qreturn A list of pages containing the word. The pages are
ordered according to the relative importance of
the word within them.

* %k ok X % %

*/
List<String> search(String word) ;

NINVD MTNNN

index nmnnn e
D9 HY GDIN NYAPN NTINND . DIOYW DMINMN MI2N DIVON DY IPXINK 1T NTINN
DMININ 720 NX NN DIOHY IO 1NN T DY VITVINN NN NN (MITN NON)
YN NN DT 1PN NP DD : DINAN DIVPN HY MNNHYY NINTIY WHNYH DNAY
DY9MIN NIV (NN DY) 12 MY 57NDA DD 119D T DY ,97 992 DY NI

.01 Sw lowercase no) NNYY ¥ BYIN,YNPHNN T2 NYNNY Y90 N VIPI

search nnsmn e
.Y NN N2 VITVINX NMAIND KW NMNN NNDPYI NPINNY WIDND NI NYIAPN
V9N NIININ T INY M) T2 NDMI DY YONN HPWNRNY DOV T NNIWIN NN 1)
.DPYI2 N M) DPN2
D231 1901 YPYN §T2 NYMIN DY DIVYANNN 190N M §T2 NI DY YONN HPWNN
9T IMNL HHON

119910
919 o915 HashMap npdnnny Map pwinn vi9a ,Java Collections » mponna ywnnwin

25 yow .Collections.sort(...) MXPNAN NITYA WX VITVIND MIIND DY NPWIN P NN
NNWY YT . NORY WPANNVY 93 KDY I9INPIOPY 1190 XN (SEring) mmon Hv yavn 1»nrny

MNSHINY 25 v .Comparator pwinn NN NUNRNNN NPYNN 1IN0 DY 1NN NVOY NN
.TPNONT VIDNN NYHNA NN IRNYNN

TNN PN (NPT PIDS 710 MOD) NPy WR HTML-n 911 mbapnnn 039mn : navn
YN0 102 WHRNWND NON D0 DY N9V DO yNad

DIDLN YTN LPIIN NIX1HN MAIN NIXPND NAY NPINN AT DIOY MIDNN NN PITAY O
NP INRY .onwny MyWordIindex nponnn Sw yam »xi31 19 npaym SearchEngine
s NONTY .rUN MPYN XIP» OPIIRD

public class Main {
public static void main(String[] args) {
SimpleSearchEngine searchEngine =
new SimpleSearchEngine (new MyWordIndex()) ;
searchEngine.run() ;

SHININT

njavar vivsnn NI (TN NI ,UNIN 1IN Main 1 ¥21p2 NY91mN NM2ININ NI N1y
1 009N DAPT

> java

1 http://www.java.com/en/

2. http://en.wikipedia.org/wiki/Java (programming language)

3 http://en.wikipedia.org/wiki/Java

4 http://www.gutenberg.org/files/27152/27152-h/27152-h.htm

: NYHHS MIYN

190IN . DMONN DXPYND I PODY DIYY DAY 2ND) 92D TIPNN PON DX INN PoN Nwa
199N NYI . AVNNY DION INNA DWWININ I OXAP NN YPNNY 7Y D1PN TIPN NN NIMY

L09YPN YV (File->Import) X120 K90 NITY2 VPN NN NID

N2 NN I9DIN PN INRY (EXisting Projects into Workspace) 0»p vp»19 Y X121 17002
.DORNNPN XPN NN Select Archive File natya 90

