1 n1OIN

7120
Static vs. Dynamic Binding
Nested Classes nniipm nignn




class Outer {
static class NestedButNotInner ({

}

class Inner {

}

NN NIpNn

NESTED CLASSES



(Nested Class) niipn np7nn

N?'7NN 1IN NYTAMN NR7NN X' NIPN NR7NNn
NN

'D'A10
(static member) n'ovo
(non-static member) n'ovo X7
NI'M"9 NIR'7NN (anonymous) N'M"IIINR
(inner) (local) nmipn

—




? 210 0T NN 7MavA

117 yiay
,2 NN 019'0 7w TWpPN 20 010N 019'V] D'YNNWN DN
SA170 AYRN DX NYWT? 1T 019'0UN NX V')

NMN2ain A0Ndn

VTN NIX D'OYIN 12X TNXA TNX 0I19'0 NynuN 'T' 7Y
.07107 X71 ynuINN 019'07 1 '095N

NIX"?
2 UIN'wn DIznY 102 019'0 NNTAN DI



NISNIYN NN - NNIZA NI7NN

7¢ D"0ION NITYT7 NYWA W' NN Np7nnY
19'071 NDLVIVN NE7NNN

"yw X" 1Y X' Np7nnn v niknan

1"V 12T 707 NI (Vynd) NIp7nn N 17X

NYN7 ,0'win wnn? NI'ovoax Nirfn? Niz!
NNITDI NINNKR NIR7NNN



Static Member Class

NINX NP7NN N2 NTam "mMpna"y n7:a0 np7nn

7V DA D'7N D'INX D"OLVO DMNA'R 7V 07NN D'PINN
NI'VLO NIPNN

TA?72 D"VVO NIYAIS / NITYT? NYW'A

V"AINT 019N NITVA 71 0"VLVO K7 DMA'R? NYWN

NOVIVN NP7NNN DY NITYA 019'07 NY"A
OuterClass.StaticNestedClass

Ui7'"AIX MN'X!
OuterClass.StaticNestedClass nested =

new OuterClass.StaticNestedClass () ;



Non-static Member Class

7Y VYOINT7 )1wn N'M15N npNnn 7w ysin 7D

n?7NNn v yoin
NIIX'NN

\

NIIX'NN np'mnn

n?7NNn v yoin

‘ﬁ

ARARR IR

'Y N 1R VPTAIND N'YY AT YXIAN I'YUn
1I¥'NN VPMAIRT 019N NN 'NN9N VP™MIN]

(qualified this)



House Example

public class House ({
private String address;

public class Room {
// implicit reference to a House

private double width;
private double height;

public String toString() {
return "Room inside: " + address;

- /

} YVO X7 'V NINwNn? nwn2




Inner Classes

public class House ({
private String address;
private double height;

public class Room {

private double height; Height of Room

// implicit reference to a House Same as this.height

public String toString() { }
return "Room height: " + height
+ " House height: " + House.this.height;

} /)

} Height of House




Inner Classes

public class House ({
private String address;
private List<Room> rooms;

public House (String add) {
address = add;
rooms = new ArrayList<Room>() ;

public void addRoom(double width, double height) {

Room room = new Room(width,height) ;

rooms . add (room) ;

Create new
Room

public Room getRoom(int i) {
return rooms.get (i) ;

}

10



Inner Classes

public static void main(String [] args) {

House house = new House ("Hashlom 6") ;
house.addRoom(1.5,3.8) ;

Room r = house.getRoom(0) ;

Room room = new Room(1.5,3.8);

Room rooml = new House ("Hashalom 7") .new
Room(1.5,3.8);

Compilation
error




Inner Classes: static vs non-static

public class Parent {

public static class Nested{
public Nested() ({
System.out.println("Nested constructed");

}

public class Inner(
public Inner() {
System.out.println("Inner constructed");

}

public static void main(String[] args) ({ Construct nested

static class

Nested nested = new Nested() ; |

Inner inner = new Parent() .new Inner():;

Construct nested
class 12




STATIC VS. DYNAMIC BINDING



Static versus Dynamic Binding

public class Account {
public String getName(){...};
public void deposit(int amount) {...};

public class SavingsAccount extends Account {
public void deposit (int amount) {...};

}

Account obj = new Account();
obj.getName () ;
obj.deposit(..);

Account obj = new SavingsAccount() ;
obj.getName () ;

obj.deposit(..); Which version is called ?

14



Binding In Java

Binding is the process by which
references are bound to specific
classes.

Used to resolve which methods and
variables are used at run time.

There are two kind of bindings: static
binding and dynamic binding.



Binding In Java

Static Binding (Early Binding)

The compiler can resolve the binding at
compile time. (As in the previous example)

Dynamic Binding (Late Binding)

The compiler is not able to resolve the call and
the binding is done at runtime only.

Dynamic dispatch

16



Static binding (or early binding)

Static binding: bind at compilation time

Performed if the compiler can resolve the
binding at compile time
Applied for
Static methods
Private methods
~inal methods
Flelds

17



Static binding example — Static
methods

public class A {
public static void m() {
System.out.println ("A") ;
}
}

public class B extends A {

public static void m() { 3

} System.out.println("B") ; Output:
}

public class StaticBindingTest ({
public static void main(String args[]) ({

ol

A.m();
B.m(); G

A a
ADb
a.m();
b.m();

new A();
new B() ;



Static binding example - Fields

public class A {
public String someString = "member of A";

}

public class B extends A {
public String someString = "member of B";

}

public class StaticBindingTest {
public static void main(String args[]) {

A a = new A(); )
A b = new B(); Output:
B ¢ = new B(); member of A

member of A
member of B

System.out.println(a.someString) ;

System.out.println (b.someString) ;
System.out.println(c.someString) ;



Dynamic Binding

void func(Account obj) {
obj.deposit();

}

What should the compiler do here?

The compiler doesn’t know which concrete object
type is referenced by obj

The method to be called can only be known at

run time (because of polymorphism and method
overriding)

Run-time binding 20




ynamic Binding

public class DynamicBindingTest ({
public static void main(String args[]) ({
Vehicle vehicle = new Car() ;
//The reference type is Vehicle but run-time object is Car
vehicle.start () ;
//Car's start called because start() is overridden method

}

class Vehicle {
public void start() {
System.out.println("Inside start method of Vehicle");

}

class Car extends Vehicle {
@Override
public void start() ({
System.out.println("Inside start method of Car");

21

} [ Output: “Inside start method of Car” ]




difference between static and
dynamic binding

Static binding happens at compile-time while dynamic
binding happens at runtime.

Binding of private, static and final methods always
happen at compile time since these methods cannot
be overridden. Binding of overridden methods
happen at runtime.

Java uses static binding for overloaded methods and
dynamic binding for overridden methods.

22



Tron




