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class Outer {
static class NestedButNotInner ({

}

class Inner {

}
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Static Member Class
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Non-static Member Class

7Y VYOINT7 )1wn N'M15N npNnn 7w ysin 7D

n?7NNn v yoin
NIIX'NN

\

NIIX'NN np'mnn

n?7NNn v yoin

‘ﬁ

ARARR IR

'Y N 1R VPTAIND N'YY AT YXIAN I'YUn
1I¥'NN VPMAIRT 019N NN 'NN9N VP™MIN]

(qualified this)



House Example

public class House ({
private String address;

public class Room {
// implicit reference to a House

private double width;
private double height;

public String toString() {
return "Room inside: " + address;

- /
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Inner Classes

public class House ({
private String address;
private double height;

public class Room {

private double height; Height of Room

// implicit reference to a House Same as this.height

public String toString() { }
return "Room height: " + height
+ " House height: " + House.this.height;

} /)

} Height of House




Inner Classes

public class House ({
private String address;
private List<Room> rooms;

public House (String add) {
address = add;
rooms = new ArrayList<Room>() ;

public void addRoom(double width, double height) {

Room room = new Room(width,height) ;

rooms . add (room) ;

Create new
Room

public Room getRoom(int i) {
return rooms.get (i) ;

}
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Inner Classes

public static void main(String [] args) {

House house = new House ("Hashlom 6") ;
house.addRoom(1.5,3.8) ;

Room r = house.getRoom(0) ;

Room room = new Room(1.5,3.8);

Room rooml = new House ("Hashalom 7") .new
Room(1.5,3.8);

Compilation
error




Inner Classes: static vs non-static

public class Parent {

public static class Nested{
public Nested() ({
System.out.println("Nested constructed");

}

public class Inner(
public Inner() {
System.out.println("Inner constructed");

}

public static void main(String[] args) ({ Construct nested

static class

Nested nested = new Nested() ; |

Inner inner = new Parent() .new Inner():;

Construct nested
class 12




STATIC VS. DYNAMIC BINDING



Static versus Dynamic Binding

public class Account {
public String getName(){...};
public void deposit(int amount) {...};

public class SavingsAccount extends Account {
public void deposit (int amount) {...};

}

Account obj = new Account();
obj.getName () ;
obj.deposit(..);

Account obj = new SavingsAccount() ;
obj.getName () ;

obj.deposit(..); Which version is called ?
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Binding In Java

Binding is the process by which
references are bound to specific
classes.

Used to resolve which methods and
variables are used at run time.

There are two kind of bindings: static
binding and dynamic binding.



Binding In Java

Static Binding (Early Binding)

The compiler can resolve the binding at
compile time. (As in the previous example)

Dynamic Binding (Late Binding)

The compiler is not able to resolve the call and
the binding is done at runtime only.

Dynamic dispatch
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Static binding (or early binding)

Static binding: bind at compilation time

Performed if the compiler can resolve the
binding at compile time
Applied for
Static methods
Private methods
~inal methods
Flelds

17



Static binding example — Static
methods

public class A {
public static void m() {
System.out.println ("A") ;
}
}

public class B extends A {

public static void m() { 3

} System.out.println("B") ; Output:
}

public class StaticBindingTest ({
public static void main(String args[]) ({

ol

A.m();
B.m(); G

A a
ADb
a.m();
b.m();

new A();
new B() ;



Static binding example - Fields

public class A {
public String someString = "member of A";

}

public class B extends A {
public String someString = "member of B";

}

public class StaticBindingTest {
public static void main(String args[]) {

A a = new A(); )
A b = new B(); Output:
B ¢ = new B(); member of A

member of A
member of B

System.out.println(a.someString) ;

System.out.println (b.someString) ;
System.out.println(c.someString) ;



Dynamic Binding

void func(Account obj) {
obj.deposit();

}

What should the compiler do here?

The compiler doesn’t know which concrete object
type is referenced by obj

The method to be called can only be known at

run time (because of polymorphism and method
overriding)

Run-time binding 20




ynamic Binding

public class DynamicBindingTest ({
public static void main(String args[]) ({
Vehicle vehicle = new Car() ;
//The reference type is Vehicle but run-time object is Car
vehicle.start () ;
//Car's start called because start() is overridden method

}

class Vehicle {
public void start() {
System.out.println("Inside start method of Vehicle");

}

class Car extends Vehicle {
@Override
public void start() ({
System.out.println("Inside start method of Car");

21

} [ Output: “Inside start method of Car” ]




difference between static and
dynamic binding

Static binding happens at compile-time while dynamic
binding happens at runtime.

Binding of private, static and final methods always
happen at compile time since these methods cannot
be overridden. Binding of overridden methods
happen at runtime.

Java uses static binding for overloaded methods and
dynamic binding for overridden methods.
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