
Example-Based Style Synthesis

Iddo Drori Daniel Cohen-Or Hezy Yeshurun

School of Computer Science
Tel Aviv University

Tel Aviv, Israel, 69978

Abstract

We introduce an example-based synthesis technique that
extrapolates novel styles for a given input image. The tech-
nique is based on separating the style and content of image
fragments. Given an image with a new style and content, it
is first adaptively partitioned into fragments. Stitching to-
gether novel fragments produces a coherent image in a new
style for a given content. The aggregate of synthesized frag-
ments approximates a globally non-linear model with a set
of locally linear models. We show the result of our method
for various artistic, sketch, and texture filters and painterly
styles applied to different image content classes.

1. Introduction

Images and paintings can be regarded as a composition
of content and style. An illustrative example is shown in
Figure 1, where the four images on the top left are ex-
amples consisting of two pairs of images which have the
same “content” and two pairs with the same “style”. Let
pi represent the different underlying content of each row
i = 1, . . . ,m, andfj the different style operator of each
columnj = 1, . . . , n. Then them × n matrix of images is
A = (aij) = fj(pi).

Problem statement: Given the sub-matrix of images
A(1 : m − 1, 1 : n − 1) as a small training set, and
the input imageA(m,n) shown on the lower right of Fig-
ure 1, which has a different content and a different style, the
task of the algorithm is to complete the remaining images
A(m, 1 : n − 1) andA(1 : m − 1, n). Loosely speaking
we would like to synthesize a new image that contains the
same content but with novel styles. In particular, the goal
is to complete the image matrix and synthesize images with
the same content as the input image, with the styles of the
images of the training set.

Synthesizing images in various styles by example is re-
lated to the problem known asimage analogies[20]: given

Figure 1. A training set of painterly rendered
images and an input from a Still Life by Paul
Cezanne form an image matrix. Each row
consists of various styles of the same image,
and each column results from applying the same
style to different images. The goal is to syn-
thesize the remaining images.

training imagesf1(p1),f2(p1) in different styles, and an-
other example image in one of the known styles,f1(p2),
the goal is to synthesize the example in the other known
style f2(p2). In contrast, we deal with a two-factor prob-
lem, since the imagefn(pn) has both unknown content
pn 6= p1, p2 and unknown stylefn 6= f1, f2. Notice that
once any of the images in the image matrix is synthesized,
the remaining images can then be generated by analogy. In
image analogies [20], the training set is used as a look-up
table, which shows explicitly the mapping between styles
of a given pixel in a given local content. Here we take a dif-



ferent approach: the training set is used to generate a model
that factors style and content, and then novel images are
synthesized based on the computed model. Factorization of
style and content has been applied successfully to aligned
images [17, 29]. However, in our setting there is no natu-
ral correspondence between the training images of different
content, as shown in the rows of Figure 1, and no natural
correspondence with the given input image, and thus the
images cannot be aligned. Moreover, the input image has a
different content, and its style is not necessarily present in
any of the examples in the training set.

Separating style and content in the general case is a dif-
ficult problem. It has been successfully applied to factors
such as illumination, that can be approximated by a linear
subspace [4]. The method introduced in this paper deals
with models which are globally non-linear. The idea is to
approximate a globally non-linear model by multiple lo-
cally linear models. The input image is decomposed into
a set of overlapping fragments of various sizes, and frag-
ments of the training images are considered at multiple po-
sitions, scales, and orientations. At the fragment level, sim-
ilar fragments are approximately locally linear. Composing
the local fragments back into a full image, approximates the
globally non-linear model by locally linear models. This
property is maintained by an adaptive choice of fragments,
as will be described in detail below.

Building upon recent example-based image synthesis
techniques [13, 15, 20, 22, 28, 29], our approach is to adap-
tively decompose the input image into fragments, and then
synthesize a coherent image by stitching together synthe-
sized fragments that follow multiple constraints. Taking
an adaptive approach captures features at multiple scales
and avoids drastic blocking artifacts. It should be empha-
sized that this work takes into account image content that
includes both stationary and local regions such as textures,
as well as non-stationary and global information present in
general images. However, our approach is limited to captur-
ing styles that are local, and at the fragment level, the model
is simple and fixed.

2. Previous work

Many operations ranging from low-level vision tasks to
high-end graphics applications have been efficiently per-
formed based on examples [3, 6, 8, 9, 10, 15, 16, 20, 21,
27, 29].

The idea of defining and factoring image style and con-
tent using a bilinear model was introduced to computer vi-
sion by Freeman and Tenenbaum [17]. Given a training set
of aligned face images of different people under varying il-
lumination, Tenenbaum and Freeman [29] refer to the iden-
tity of a face as content whereas the illumination is consid-
ered as style. Style and content are factored pixel-wise by

fitting a symmetric bilinear model to the training images.
Combinations of style and content are synthesized from a
new face image under novel illumination by changing the
estimated parameters of the new image.

Given a set of parameters describing facial expressions
such as degree of happiness or surprise, along with a rela-
tive motion field of the face, Beymeret al. [5, 6] use a re-
gression function that estimates a mapping from parameters
to motion for synthesizing novel facial expressions from a
set of labelled training images.

Rather than defining individual filters by hand, Hertz-
mannet al. [20] automatically studied a mapping of spa-
tially local filters from image pairs in pixel-wise correspon-
dence, one a filtered version of the other. A new target
image is then filtered analogously to the training images.
Pixels are rendered by comparing their neighborhood, and
those of a coarser level in a multi-resolution pyramid, to
neighborhoods of a training image pair. Considering the
original image as output and taking its segmentation map as
input allows the texture to be painted by numbers [18]. A
new image that is composed of the various textures is syn-
thesized by painting a new segmentation map. Swapping
the output segmentation map with the original input image
results in example-based segmentation [8]. In our case, we
cannot only approximate a common representation for im-
ages by blurring and median filtering and then proceed by
analogy, as this results in the loss of image detail.

Freemanet al. [15, 16] derive a model used for perform-
ing super-resolution by example. The technique is based on
examining many pairs of high-resolution and low-resolution
versions of image patches from several training images.
Baker and Kanade [3] apply this technique restrictively, to
a class of face images. Given a new low-resolution face
image its corresponding high-resolution image is inferred
by re-using the existing mapping between individual low-
resolution and high-resolution face patches.

The term image quilting[13] was coined for describ-
ing the process of synthesizing a new image by stitch-
ing together blocks of existing images. The technique fo-
cuses on handling boundaries between blocks and is ap-
plied to texture synthesis. It enforces a constraint that the
error between overlapping blocks is minimal, and blocks
are stitched along a minimum cost path [11] that is com-
puted by dynamic programming. The results depend on the
size of a block, which varies according to the texture prop-
erties. Hierarchical pattern mapping [28] takes into account
that patterns in a texture are often in many different sizes.
A 3D surface is progressively covered by texture patches
of various shapes and sizes. Starting from a large patch, it
is split into smaller ones based on the texture fitting error
with already textured neighborhoods. By adding the con-
straint that the synthesized texture match an example image,
Ashikhmin [2] presented texture transfer, in which an exam-



ple image is rendered with a training texture. This technique
was extended to color transfer [30], a special case of image
analogies, by matching local image statistics. In our setting,
we cannot simply transfer color and texture from one style
to another, as applying properties of one style over the other
could result in artifacts.

3. Image manifolds

A general mathematical perspective for describing the
variability of images is to regard an image, which is repre-
sented by a vector of pixel intensities, as a point in an ab-
stract image space, and then to characterize a set of images
by a manifold in this high-dimensional image space [26].
The statistics of natural images are correlated [14] and far
from random. Recently, several researchers [4, 23] have in-
dependently shown that irradiance environment maps, for
rendering Lambertian objects under distant illumination,
are well approximated by a nine-dimensional linear sub-
space. Thus, from any given view, the appearance of an
arbitrary Lambertian shape, under arbitrary distributed dis-
tant illumination, is approximately near a ten-dimensional
manifold. By adding more parameters, the dimensionality
of the manifold increases, and it becomes highly complex
and non-linear, although its dimensionality remains far less
than that of the image space.

In our work, we would like to be able to extrapolate be-
tween images in parameter space by moving along such a
manifold and extrapolating novel points. This requires ad-
dressing three issues: (i) The manifold is complex and has
a highly non-linear global structure, (ii) The “curse of di-
mensionality”; the dimensionality of the image space is too
high, and (iii) There is no natural correspondence between
the images. Classical approaches such as Principle Compo-
nent Analysis or Multiple Discriminant Analysis, that find
projections that best represent or separate data in a least
squares sense, are unsuitable for our purposes since they
require correspondence.

Our approach is based on the observation that although
the manifold is globally non-linear,locally it is approxi-
mately linear. This alleviates the problem of complexity of
the manifold. It permits applying simple local linear mod-
els as a good approximation of a global highly non-linear
model. To reduce the high dimensionality of the space and
to overcome the lack of correspondence, the images are de-
composed into multi-scale fragments. A fragment is defined
as a connected region cut from an image tile. The tiles are
overlapping and their aggregation is an over-complete rep-
resentation of the image. The key idea is to apply the syn-
thesis at the tile level, and in a way that the composition of
their fragments into a full image is coherent.

4. Style synthesis

As explained in the introduction, we would like to syn-
thesize novel images based on the training set. Our solu-
tion is based on adaptively decomposing the input image
into fragments and applying the synthesis locally. We con-
struct a feature pyramid for each image to capture various
features at multiple scales. The training set constitutes an
over-complete representation, considering fragments at all
scales, positions, and eight orientations. The input image
is adaptively subdivided by a quad-tree whose leaves con-
sist of overlapping tiles that are traversed in Morton’s order
[25]. Images are then synthesized from coarse to fine where
each level is based on a coarser level. This captures features
at multiple scales and accelerates the computations.

At each level, tiles are synthesized from a number of ex-
ample tiles. The choice of these examples is based on multi-
ple constraints, which include the underlying image geome-
try. The extrapolated tiles are then cut into fragments which
together form a coherent tessellation of the novel image. In
the following we elaborate on each of these stages.

4.1. Image decomposition

We adaptively decompose the input imageA(m,n) into
overlapping tiles. Our algorithm maintains a quad-tree for
the input image, where each of its nodes represents an image
tile (element), and its four children represent a partition of
that element. The leaves of the tree correspond to elements
that together cover the image. Each element is extended to
include overlapping boundaries. These boundaries form the
constraints among adjacent elements which are necessary
to generate a coherent image. During image generation, el-
ements are traversed in an order that preserves coherence
with previously synthesized regions.

An adaptive subdivision requires a method for deciding
whether an element should be split or not. Our initial subdi-
vision of the input is based on the luminance and color val-
ues across an element. If any of the absolute differences be-
tween the maximum and minimum values is above a thresh-
old δ, and the minimum element sizeεmin has not yet been
reached, then the element is recursively subdivided. In all
the results shown in this paper we setδ between 0.25 and
0.4, andεmin to 4 by 4 and 8 by 8.

This coarse subdivision is further refined at runtime in
any of the following stages: (i) Multi-dimensional search:
if a suitable set of candidate tiles is not found; (ii) Fragment
synthesis: if the model fails to accurately reconstruct (val-
idate) the input tile; and (iii) Image reconstruction: if the
synthesized fragments do not agree with previously synthe-
sized regions. There is a trade off here since finer elements
meet the above conditions but do not capture large features.



4.2. Multi-dimensional search

An important part of the algorithm is the selection of a
set of fragments which has a 2D (style and content) em-
bedding that reflects the relation among the training set im-
ages in the higher dimension. At the same time, the syn-
thesized fragments must agree with their neighbors. More-
over, in a single step, the algorithm synthesizes a set of
fragments, one for each style and content. Thus, a multi-
dimensional search must simultaneously take into consider-
ation constraints from multiple tiles and boundary values.
Boundaries are crucial in capturing geometric configura-
tions and maintaining consistency with previously synthe-
sized regions.

A search vectoris the concatenation of components from
multiple origins, as illustrated in Figure 2. Formally, let
A(i, j)l denote an image in rowi and columnj of the ma-
trix, at scalel, where l = 0 is the coarsest level. Let
Tp,ε,o denote an extended tile around positionp, of sizeε,
in orientationo, and similarly, letBp,ε,o denote the corre-
sponding boundary. Each search vector is a concatenation
of the boundariesB with previously synthesized fragments
in stylesj = 1, . . . , n − 1, and tileT in style n, and the
corresponding tiles at a coarser scalel − 1, for l > 0,

Bp,ε,o(A(i, 1)l), . . . , Bp,ε,o(A(i, n− 1)l), Tp,ε,o(A(i, n)l),

T p
2 , ε

2 ,o(A(i, 1)l−1), . . . , T p
2 , ε

2 ,o(A(i, n)l−1). (1)

Given the vector defined in Eq. (1), with input content
i = m and upright orientation, we find its nearest neigh-
bors in each content rowi = 1, . . . ,m− 1, over each posi-
tion, and orientation. This enforces the same positionp and
orientationo, for the same content across different styles
j = 1, . . . , n, but allows different positions and orientations
for different contentsi = 1, . . . ,m.

T p
2 , ε

2
(A(i, 1)l−1) T p

2 , ε
2
(A(i, n − 1)l−1) T p

2 , ε
2
(A(i, n)l−1)

Bp,ε(A(i, 1)l) Bp,ε(A(i, n − 1)l) Tp,ε(A(i, n)l)

Figure 2. The components of a search vector
for a single content row are highlighted. No-
tice that the extension of a uniform tile cap-
tures the edge.

The above multi-dimensional search is applied at multi-
ple scales over several features. Our algorithm maintains
a feature pyramid, created in a pre-processing stage, for
each image in the matrixA. The feature pyramid consists
of color and luminance Gaussian pyramids, as well as four
gradient pyramids in the horizontal, vertical and two diago-
nal directions, and a Laplacian pyramid, which are derived
from the luminance values. Features are selected accord-
ing to properties of the training set and the component type.
Color is effective for a rich training set, which contains a
large distribution of samples for a high dimensional search.
Luminance is suitable for both the tiles(T ) and boundaries
(B). In addition, gradients and the Laplacian are effective
features for tiles, but not used for thin boundaries. Gradients
are computed by the Sobel operator and are correspondingly
isotropic for horizontal, vertical and diagonal edges. The
Laplacian is invariant under rotations for increments of 45
degrees. In this work we experimented withL1, L2 norms,
normalized correlation coefficient, and ordinal measures [7]
for similarity of vectors. The normalized correlation coef-
ficient is linearly invariant to contrast, and ordinal measure
is too expensive for our purposes. Therefore, we use theL1

andL2 norms depending on the selected features.
The search vectors can be regarded as points in multi-

dimensional space. Finding a best match is then equiva-
lent to finding the nearest-neighbor. Three main strategies
of searching for nearest neighbors are pre-structuring, par-
tial distances, and pruning [12]. We use partial distances,
which constitute a monotonic non-decreasing function, and
test intermediate distances twice. In order to further im-
prove matching performance, the search for a similar vector
is performed hierarchically from coarse to fine. The po-
sition of the best matching vector is successively refined
based on the best position found at a coarser level. The
search is then confined to a window that decreases expo-
nentially in size while traversing the pyramid from coarse
to fine. For a full pyramid, each search is logarithmic in
the number of pixels in the finest level times the number
of features. We choose the coarsest level in the search for
each vector such that the size is at leastεmin. Overall, the
entire search is linear in the resolution of the input image
times the logarithmic factor in the number of training im-
ages, their resolution, the number of orientations, and the
number of features.

4.3. Fragment synthesis

In this section we describe the mathematical tool used to
locally factor style and content of tiles and synthesize novel
fragments. We begin by briefly reviewing multilinear and
bilinear forms, and factoring equations for symmetric bilin-
ear forms (the reader is referred to Tenenbaum and Freeman
[29] for detailed derivations).



A multilinear form onV n is a mappingf : V n → F
which is linear in each argument, that is, for allxi, x′i ∈ V ,
and allλ ∈ F :

f(x1, . . . , xi + x′i, . . . , xn) = f(x1, . . . , xi, . . . , xn) +
f(x1, . . . , x′i, . . . , xn)

f(x1, . . . , λxi, . . . , xn) = λf(x1, . . . , xi, . . . , xn).

The special case of a 1-form is a linear mappingf(αx +
βy) = αf(x)+βf(y). A 2-form is a bilinear form. Defined
onV ×W , it is a mappingf : V ×W → F which is linear
in each argument, that is, for allx, x′ ∈ V , all y, y′ ∈ W
and allλ ∈ F :

f(x + x′, y) = f(x, y) + f(x′, y)
f(x, y + y′) = f(x, y) + f(x, y′)

f(λx, y) = λf(x, y) = f(x, λy).

If f : V × V → F is a bilinear form then the matrixM
of f relative to the basis(v1, . . . , vn) is given bymij =
f(vi, vj). If x =

∑n
i=1 xivi andy =

∑n
i=1 yivi then the

polynomial and matrix representations of the form are:

f(x, y) =
n∑

i,j=1

xiyjmij = xtMy . (2)

A bilinear form is symmetric iff(x, y) = f(y, x) for all
x, y ∈ V , and in matrix formM = M t.

As described above, a bilinear form maps two vectorsx
andy by a matrixM to a scalar, and introducing subscripts
for multiple vectors, matrices and scalars:

aijk = xt
iMkyj . (3)

Now consider the inverse problem. Given only a set of
scalarsaijk, a bilinear model can be fitted by minimizing
the total squared error:

min
xi,Mk,y

j

∑
i

∑
j

∑
k

(aijk − xt
iMkyj)

2. (4)

A solution consists of a set of bilinear forms, defined by
matrices{Mk}, together with sets of vectors{xi} and{yj}.

We use an iterative SVD method as presented in [29] for
Eq. (4). An exact solution exists when the number of vec-
tors{xi} and{yi} equals their dimension. For example, for
general matricesMk, an exact solution exists when choos-
ing each set{xi} and{yi} to be a basis. For the special case
of the standard basis, the matrices are simply defined by the
scalar values themselvesMk(i, j) = aijk.

Next, we would like to estimate the two vectorsu andv,
derived from the established mappings{Mk}, for another
vectorb:

bk = utMkv. (5)

The above is solved iteratively, where the initial guess for
the vectorv is the mean of the vectorsyi, and the superscript
t denotes the vector transpose of a block matrix [29]:

u = ((Mv)t)−1b v = ((M tu)t)−1b. (6)

Finally, the derivation above is applied to a style and
content matrix of tiles. The tile positions, orientations and
scales are of the boundaries and tile in scalel in Eq. (1),
for the best match in each content rowi = 1, . . . ,m − 1,
and the original search vector. Thekth pixel value of a tile
in content rowi and style columnj is denoted asaijk. The
vectorsxi andyj determine the style and content of each
tile. The vectorb denotes the input tile, and its estimated
style and content parameters areu andv. In case the model
fails to reconstruct (validate) the input tile, Eqs. (5,6), we
first extend the number of nearest neighbors considered in
the search, and then refine the input subdivision.

Having estimated the style and content parametersu, v of
the remaining row and column, the tile matrix is completed
by applyingxiMkv anduMkyj .

As explained, the multi-dimensional search is based on
a number of selected features. However, after the search
finds a set of tiles, we consider only luminance, and color
for a sufficiently varied training set. Synthesis is performed
in the perceptually-based(l, α, β) color space [24]. This
space minimizes the correlation between channels, and so
tile synthesis is performed separately for each channel. The
results are then transformed back to(r, g, b) values for dis-
play.

4.4. Image reconstruction

Prior to synthesis, the search for a set of tiles enforces
that they match previously synthesized regions. This is not
sufficient to guarantee that the synthesized tiles match pre-
viously synthesized regions as well. The error after syn-
thesis is computed for the overlapping boundaries, over all
features, across the different styles. If it is proportional to
the error before synthesis, then we repeat the synthesis pro-
cess, extending the number of nearest neighbors. If a small
number of nearest neighbors is exhausted, then the search
and synthesis process is refined by recursively subdividing
tiles. Once a set of matching tiles is synthesized, we find the
minimum cost path along the error surface of the overlap-
ping boundaries by dynamic programming [13], breaking
ties by taking the center values.

Traversal of the entire input image guarantees a cover
of the images in themth row, but not of the images in
thenth column ofA. The synthesized tiles of thenth col-
umn are transformed back to their original orientation, and
may appear at any image position according to the search.
Thus, for each scalel, after synthesizing imagesA(m, j)l

for columnsj = 1, . . . , n− 1, the imagesA(i, n)l for rows



i = 1, . . . ,m− 1 are completed by extending image analo-
gies. The roles of the training images and the inputs are then
reversed. The images of each rowi < m serve separately
as input, and themth row serves as the training images.
Additional modifications, compared with image analogies
[20], consist of (i) adaptively decomposing the input, (ii)
stitching together fragments instead of synthesizing pixels,
and (iii) searching for a simultaneous match of previously
synthesized boundaries and candidate regions, in multiple
scales and across all styles as shown in Figure 2.

Since style synthesis is performed from coarse to fine we
specify the initial conditions for the search and synthesis,
and the inductive step applied from each level to the next.
First, if the coarsest levell = 0 in the pyramid consists of
a single tile, then the search is empty, and the remaining
tiles are synthesized. Next, forl > 0, the image boundaries
for each style in the remainingmth row are initialized, and
the coarser levell − 1 serves as an initial guess for the re-
mainingnth column. In particular, for different luminance
across styles, after initializingA(m, j) with the target, lin-
early matching the histograms toA(1 : m− 1, j) improves
the result. In this case,A(i, n) is initialized with random
samples ofA(m : n). For the same colors across styles,
initializing A(i, n) with the mean ofA(i, 1 : n − 1) yields
comparable results.

Finally, we consider two special cases: (i) A single con-
tent training row; The search is performed under multiple
constraints simultaneously, finding a single fragment for
each image. Therefore instead of extrapolation, the near-
est neighbor is selected. Notice that if there is no underly-
ing model across the different content rows, then images in
the same style and different contents are regarded as a sin-
gle image; and (ii) A single style training column; Content
rows are considered as one image, and the search finds a
single fragment, selecting the nearest neighbor.

5. Results

We have experimented with our method with various
sources and styles: (i) Artistic, sketch, and texture filters
from an image editing tool [1]; (ii) Painterly renderings gen-
erated by applying layers of curved brush strokes [19]; and
(iii) Real paintings. The filters and painterly styles were
applied to a variety of image classes from a database of
stock photographs. The subjects of these photographs are
varied and include landscapes, buildings, people, products,
and more. For all of these families of styles and image con-
tent classes, our method produces visually plausible results.
Computation times range from one hour (Figure 4) to ten
hours (Figure 3) for synthesizing a set of 256 by 256 im-
ages on a 1.8GHz PC, running a Java implementation.

The transposed matrix in Figure 3 shows natural images
in four different artistic styles, in each row from top to bot-

tom: poster edges, fresco, paint daubs and dry brush. The
poster edges filter reduces the number of colors in an image
and accentuates edges with black lines. The fresco filter ap-
plies short and rounded dabs creating a coarse style. The
paint daubs filter paints an image with simple round brush
strokes. The dry brush filter simplifies an image by painting
edges with round brush strokes and reducing the range of
colors.

The transposed matrix in Figure 4 shows landscape im-
ages in three different sketch styles: charcoal, reticulation,
and graphic-pen. The charcoal filter draws major edges in
bold, while mid-tones are sketched using diagonal strokes.
The reticulation filter creates an image that appears clumped
in the shadow areas and lightly grained in the highlights.
The graphic pen filter uses fine linear strokes to capture
image details. Only upright orientation was considered for
synthesizing the images shown on the right column, to cap-
ture the directional strokes of the graphic-pen. We compare
our results with applying the filter directly to the original
images, as shown in the bottom row of Figure 4.

The matrix in Figure 5 shows landscape images. Each
of the landscape images has a different appearance. We ap-
plied three different artistic and texture styles: craquelure,
sponge, and water-color. The craquelure filter paints an im-
age onto a relief surface, generating cracks that follow con-
tours. The sponge filter creates images with highly textured
areas of contrasting color. The water-color filter simplifies
image details by saturating color at edges.

The matrix in Figure 6 shows images in two different
painterly styles [19], impressionist and expressionist, and
a real painting. The impressionist style applies moderately
curved brush strokes without random jitter. The expression-
ist style paints an image with elongated brush strokes with
random color jitter. The input image is from a painting in a
post-impressionist style.

6. Conclusions and future work

We have introduced a method for style synthesis that uti-
lizes a training set of images. While the specific imple-
mentation here is image synthesis, the main motivation is
to explore the separability of content and style, which can
be viewed as a fundamental topic in image pattern analysis.
Our method is based on an adaptive scheme to synthesize
local fragments of an image by extrapolating multiple frag-
ments. Future work will focus on problems with more than
two factors, using a local multilinear model for approximat-
ing highly complex factors of appearance, such as changing
weather conditions.

Our approach is example-based, which means that its
performance is dependent on the richness of the available
fragments in the training set. In addition, it is an image-
based 2D method and does not incorporate high-level in-



Poster Edges

Fresco

Paint Daubs

Dry Brush

Figure 3. A set of natural images and artistic
filters form an image matrix. The two images
in dry-brush on the left of the lower row, and
the three images in poster-edges, fresco, and
paint-daubs on the right column were synthe-
sized by our algorithm.

formation about the underlying scene. Although we have
applied several techniques for accelerating the search, our
algorithm is still very slow. To speedup the search we would
like to apply geometric hashing, and then use larger training
sets and consider tile deformations.

Finally, an interesting extension of this work is to 3D
surface patches of 3D models. This will require to partition
a mesh into patches and incorporate mesh coordinates in the
synthesis process.

Acknowledgments

This work was supported by a grant from the Israeli Min-
istry of Science and by a grant from the Israeli Academy of
Sciences (center of excellence).

Charcoal

Reticulation

Graphic Pen

Ground Truth

Figure 4. A set of landscape images and
sketch filters form an image matrix. The two
images in graphic-pen on the left of the third
row, and the two images in charcoal and retic-
ulation on the right column were synthesized
by our algorithm.

References

[1] Adobe Systems Incorporated. http://www.adobe.com.
[2] M. Ashikhmin. Synthesizing natural textures. InACM Sym-

posium on Interactive 3D Graphics, pages 217–226, 2001.
[3] S. Baker and T. Kanade. Limits on super-resolution and how

to break them.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(9):1167–1183, 2002.

[4] R. Basri and D. Jacobs. Lambertian reflectance and linear
subspaces. InIEEE International Conference on Computer
Vision, volume 2, pages 383–390, 2001.

[5] D. Beymer and T. Poggio. Image representation for visual
learning.Science, 272:1905–1909, 1996.

[6] D. Beymer, A. Shashua, and T. Poggio. Example based im-
age analysis and synthesis. MIT AI Lab Technical Memo
1431, 1993.

[7] D. N. Bhat and S. K. Nayar. Ordinal measures for image
correspondence.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20:415–423, 1998.



Sponge Craquelure Water Color

Figure 5. A set of landscape images and
artistic, texture filters form an image matrix.
The images in sponge and craquelure on the
lower row, and the two images in water color
on the top right column were synthesized by
our algorithm.

[8] E. Borenstein and S. Ullman. Class-specific, top-down seg-
mentation. InEuropean Conference on Computer Vision,
pages 109–124, 2002.

[9] M. Brand and A. Hertzmann. Style machines. InACM Sig-
graph, pages 183–192, 2000.

[10] C. Bregler, M. Covell, and M. Slaney. Video rewrite: driving
visual speech with audio. InACM Siggraph, pages 353–360,
1997.

[11] J. Davis. Mosaics of scenes with moving objects. InIEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 354–360, 1998.

[12] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. Wiley-Interscience, 2nd ed., 2001.

[13] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. InACM Siggraph, pages 341–346,
2001.

[14] D. J. Field. Relations between the statistics of natural images
and the response properties of cortical cells.Journal of the
Optical Society of America, 4(12):2379–2394, 1987.

[15] W. T. Freeman, T. R. Jones, and E. Pasztor. Example-based
super-resolution. IEEE Computer Graphics and Applica-
tions, pages 56–65, 2002.

[16] W. T. Freeman and E. Pasztor. Learning low-level vision. In
IEEE International Conference on Computer Vision, pages
182–189, 1998.

[17] W. T. Freeman and J. B. Tenenbaum. Learning bilinear mod-
els for two-factor problems in vision. InIEEE Conference on
Computer Vision and Pattern Recognition, pages 554–560,
1997.

[18] P. Haeberli. Paint by numbers: abstract image representa-
tions. InACM Siggraph, pages 207–214, 1990.

Impressionist Expressionist Cezanne

Figure 6. A set of painterly rendered images
and an input from a Still Life by Paul Cezanne
form an image matrix. The images in impres-
sionist and expressionist style on the lower
row, and the two images on the top right col-
umn were synthesized by our algorithm.

[19] A. Hertzmann. Painterly rendering with curved brush strokes
of multiple sizes. InACM Siggraph, pages 453–460, 1998.

[20] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin. Image analogies. InACM Siggraph, pages 327–340,
2001.

[21] A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz. Curve
analogies. InProceedings of 13th Eurographics Workshop
on Rendering, pages 233–245, 2002.

[22] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-
time texture synthesis by patch-based sampling.ACM Trans-
actions on Graphics, 20(3):127–150, 2001.

[23] R. Ramamoorthi and P. Hanrahan. A signal-processing
framework for inverse rendering. InACM Siggraph, pages
117–128, 2001.

[24] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley. Color
transfer between images.IEEE Computer Graphics and Ap-
plications, pages 34–40, 2001.

[25] H. Samet.Applications of Spatial Data Structures. Addison-
Wesley Publishing, 1989.

[26] S. H. Seung and D. D. Lee. The manifold ways of perception.
Science, 290:2268–2269, 2000.

[27] P.-P. Sloan, C. Rose, and M. Cohen. Shape by example. In
ACM Symposium on Interactive 3D Graphics, pages 135–
143, 2001.

[28] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern
mapping. InACM Siggraph, pages 673–680, 2002.

[29] J. B. Tenenbaum and W. T. Freeman. Separating style
and content with bilinear models.Neural Computation,
12(6):1247–1283, 2000.

[30] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. InACM Siggraph, pages 277–280,
2002.


